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In the recent work en the mass-corrections to the.
fine structure of hydrogen-like dtoms, Salpeter has.

presented the parturbation theory of the relativistic
eigenvalue problem for two-particle system.!) The
formulation is essentially based on the facts: there
is no external field and thus we have only to do with
the coordinates, the motion of the center of gravity
being completely separated. Moreover, the unperturbed
interaction between particles is assumed to be instan-
taneous. This reduces rigorously the equation to the
one involving only equal time variables for the two
particles which corresponds to the Breit equation.
His method is, accordingly, not applicable to the
cases where there is an external field or the unperturb-
ed interaction is noninstantaneous. We shall offer
in this note a primitive but more general perturbation
theory including -Salpeter’s as-a special case.

We consider two electrons in an external field
which is assumed to be independent of time2) Such
a system is described by the relativistic equation

[y (P—ed) + M) (G (P—ed) + M), —1]1¢=0,
(1)
where Pu stands for 1/i-8/0xu, A is the external
field, M the mass operator, 7 the interaction kernel.
@ and & label the respective electrons. We replace
the mass operator /7 by the electron mass 7 and
consider the remaining terms as being absorbed into
79 We also distegard the effects of pair creation
by the external field. Defining the total energy and
the relative energy by
(PaotPyo) =L and 1)2- (Pyo—Pyo) =¢
respectively, (1) is rewritten as
(F—I)¢=0, (1)
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where 7=f4 8> 7 and
F(E, )= [I/Z'E—HG(P(‘) +E]
X [1/2-E—Hy (Pp) —¢] ,
Ha (Pa) = [d @ (Pa' L’A) +"A0+7”B(I'] ’
Hy(Py)=[a?(Py—ed)+edy+mpr] . ]
(2)

Now, we -divide the total energy £ into the
unperturbed energy £y and the perturbed 4E=E,
+Egteuine » and expand, correspondingly, 7 as

P=Fy (4E) F/+ (AE)? 7,

in “which Fy=F(Ey €), F/=1J2-(Ey—H,(Py)
—Hy(Py)) and F7=1/4. The interaction kernel
7 and the wave function ¢ are also divided into the
unperturbed part 7y, ¢, and the perturbed 4/=7;
Tyt » Adp=¢14 ot . Substituting these
expansions into (1/) and picking up the terms of
the same order, we can determine the perturbation
energy and the wave function successively. First, as
the zeroth order terms, we have the unperturbed
equation

(Fo—1Lo) o=0. (3)
The instantaneity of 7, is not necessary, although
one ‘could- hardly solve (3) without it.

We proceed next supposing that the solution ¢,
and the Green’s function G of the equation (3) have:
been obtained by some methcd. - The first order
terms of (1) is the equation

(B—=L) 1+ L1 Fipy—1, ¢p=0, (4)
which determines £, and ¢, : From the inner product
of (4) with ¢ and the hermite character of 7,, we
have -the first order perturbation energy

E1= (¢’07 ]1 ¢0)/(‘/’0’ F/ﬁbo): (5)
The denominator and the numerator of (5) have a
common divergent factor, i.e., Sa”X in case of no
external fields or Sa’Xo in case of time-independent
external fields, Xu being the coordinates of the center
of gravity. In what follows we suppose such a factor
to be -dropped. We also obtain from (4)
1=Go I1go—E,Go F/ s - (6)

In the same way, the second order terms of (1)

gives
Zy=1/(¢o, #/ ¢o) -{(¢0> L2 ¢0) + @o» 71 Go & o)
—E3(¢oy £1Go 7 ¢y)



Letters to the Editor 109

—E) (¢ F7Go I1d) +E1%(doy 777/ Go 77 o)
—Z2 (o, FV40) 3 - (7)
Thus it is shown that even if the energy appears
quadratically in the fundamental equation, the pertur-
bation energy can be calculated to any order by
applying the similar procedure as in the nonrelativistic
cases where the equation contains the energy lineatly.
When there is no external field, all quantities
become the functions of the relative energy-momentum,
¢ and P=P,=—P;. In particular, 7, is the sole
function of the relative momentum if it is instan-
taneous. Then we can define the three-dimensional
wave function X(P), following Salpeter, by

(45 (P) AL (P) = A2(P) AL (P)X(P)
= [ egop- (8)

Here AZ(P), A%(P), A!(P) and A’(P) are
the usual Casimir operators ; e.g., A7 (P)=[Z,(P)
+Ha(P)]/2E,;(P‘) where Z£,(P)=+ (m,2+
P2, and mg=m,=m is supposed to have a
small negative imaginary part.
The wave function X(P) satisfies the equation
[72g— H o (P) —Hy (P)]12(P)
=—@n) (LB e+ (9)

From (8) and (9), the e-dependence on ¢ (#) is
uniquely determined as follows :

¢o(#) =—(2m) !

Ey—H,(P) — Hy (P)
BB —H(P) el [§Eo— Hy (P) —¢]

(P,
(10)

where how to manage the poles in the integration
over -¢ is decided according as A, (P) takes the value
+Z(P) or —E(P).

We define next.¢A(p) by

¢A(f) =— (2ni) =1
E—'[{ﬂ(P) —Hh (P)
X BE—Hy(P)+el [bE—H,(P)—l

X

wP).
(€3 Y)
In (11) £ is the eigenvalue of (1) and it is to be
noted that S(bo(/)a’ezgkpd(p)r/s- Then ¢4 is
easily shown to satis(ly
—@ri)" 4B 1= (F—1) 2 (D).  (12)
Writing
d=¢At+ga=dotd Attt
+dratdaat-os
we get from (1) and (12)

— @) (AEY 2= (A1) ¢— (FH—1o) Pa
—[(4E) F/+ (4E) 2 FV] s (13)

This is the fundamental equation of Salpeter’s theory,
from which the perturbation energies can be calculated.
On the other kard, the zeroth order terms of (12)
are nothing but the unperturbed equation (3). ¢;4
and ¢, are obtained from (12) and (13) respective-
ly, and each contains the auxiliary function x(P),
but their sum is free from Z(P) and coincides with

¢1(P) given by (6). Moreover, the equation (12)

serves for showing the generality of our method of
perturbation ; as the first order terms of (12), we have

— i) ~LE = (FHy— o) ) A+ E I/ ¢y
which gives the relation
(Pos £7¢o) =— 2md) ~1(¢o X) - (15)

(¢p» %) on the right hand side of (15) was normaliz.
ed to unity by Salpeter. In this case, accordingly,
E, becomes — (217) (¢» 71 ¢pp) in accordarce with
Salpeter’s result. The wave function 2(P), therefore,
seems not to play an essential role. From the second
order terms of (12) and (15), we can also prove the
relation

I3 (dos FV'o) == (gor 7771%)5 (16)

which reduces .our second order perturbation energy
(7) to Salpeter’s.

It is thus obvious that our primitive perturbation
theory, which is valid even in the presence of external
field, includes completely Salpeter’s method which can
be us2d only in the absence of external field.

This perturbation theory can be applied, for
example, to the calculation of the triplet splitting of
He.atom, in which the nucleus is considered as an
external field Ay, the Coulomb interactions between
two electrons as an unperturbed interaction 7o, the
exchenge effects of a transverse photon between
electrons as 7;, and so on.
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1) E. E. Salpeter, Phys. Rev. 87 (1952), 328. The
direct application of Salpeter’s method to the
calculation of the hyperfine structure of the
positronium has been made by R. Karplus and
A. Klein, Phys. Rev. 87 (1952), 848.

2) This assumption about an external field is permis-
sible in most practical cases.

3) Such terms may be frequently omitted in practical

problems.



