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The smoothness of KAM (Kolmogorov-Arnold-Moser) curves when approaching the crit-
ical point which constitutes the existence/non-existence boundary of a KAM curve is inves-
tigated in the standard mapping as a typical example of analytical twist mappings. We give
numerical results indicating that the KAM curve at the critical point is C1, but its derivative
is not a function of bounded variation. The fractal distribution function of mapped points
on such KAM curves is caused by this unbounded variation.

§1. Introduction

We are interested in the smoothness of KAM curves in non-integrable hamilto-
nian systems. Even KAM curves in two-dimensional twist mappings exhibit com-
plicated behavior. Birkhoff 1) proved that homotopically non-trivial KAM curves
of twist mappings of the annulus are Lipschitz continuous. This implies that these
KAM curves are at least once differentiable almost everywhere in the sense of the
Lebesgue measure.2) When we consider a one-parameter family of smooth twist map-
pings, we can generally expect that the smoothness of the KAM curves decreases as
the maps deviate further and further from an integrable one.3) The breakup process
of KAM tori was investigated extensively in non-twist systems.4) In the present pa-
per, based on the above expectation, we consider a typical example of an analytical
family of twist mappings, the standard mapping.

Let us introduce two notations. First, if a KAM curve with irrational rotation
number ν exists for a ≤ ac(ν) and does not exist for a > ac(ν), then ac(ν) is called
the critical parameter value for that KAM curve. If some KAM curve exists for
a ≤ ac and no KAM curve exists for a > ac, then ac is called the critical parameter
value (for the family of maps). Second, the KAM curve at a = ac(ν) or at a = ac is
called the critical curve.

It is known that the critical curve is not analytic, but its length is finite. The
motion restricted to a KAM curve is characterized by a one-dimensional circle map-
ping. Then, the following theorem by Denjoy5) establishes that the critical curve is
at least C1.
Theorem 1-1 (Denjoy): If G : S1(circle) → S1 is a C1 diffeomorphism and its
derivative is a function of bounded variation then G does not have a wandering
interval.
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The critical curve is not C2+ε (ε > 0),6) and the maximum smoothness of the critical
curve with the golden mean rotation number is C1+γ (γ < 1).7) The meaning of the
notation C1+γ is explained in §5. The fractal structure of a distribution of mapped
points on the critical curves appear, and the f(α)-spectrum8) and information di-
mension for the critical curve are estimated.9) This implies that the critical curve is
not C2, since the distribution function is absolutely continuous if the critical curve
is C2. Let us summarize several known results.
Property 1-2: The critical curve is C1+γ (0 ≤ γ < 1).
However the authors feel there is some ambiguity in this statement. In fact, there
exist examples of C1+γ diffeomorphisms that have wandering intervals.2),5) Then,
we cannot determine the existence or non-existence of a KAM curve by the Hölder
continuity.

The numerical result obtained in this paper is that the critical curve is C1, but
its derivative is not a function of bounded variation. This is an improved result com-
pared with Property 1-2. Since the property of bounded variation of the derivative
of a KAM curve does not hold at the critical value, the critical curve is at most C1,
not C1+γ (see §5).

The organization of this paper is as follows. In order to study the transition to
fractal curves from smooth curves, we measure the lengths of the graphs of KAM
curves and of the related variables. To do so, we assume that the smoothness of KAM
curves is Cr (r � 1). Though the validity of this assumption is not assured, our
results seem to justify it for a < ac(ν). In §2, we review the standard mapping and
the involutions. We introduce a circle mapping and derive the functional equations
for the KAM curve and the circle mapping. In §3, the properties of KAM curves and
the corresponding circle mapping are obtained, and all tools to study the structure
of KAM curves are also obtained. Using such tools, we first estimate the critical
value ac and several critical values ac(ν) in §4. In §5, the lengths mentioned above
are calculated, and the change of smoothness is discussed. As a result, we derive
our main result. The change of the distribution of mapped points on KAM curves
is studied in §6. We also show that the fractal structure of the distribution function
is caused by the unbounded variation of the derivative of the circle mapping. In §7,
we make some remarks.

§2. Basic formulation of KAM curves

2.1. The standard mapping T (x, y) on a cylinder

The standard mapping T (x, y) [−∞ < y < ∞, 0 ≤ x < 2π] on the surface of a
cylinder is expressed as

yn+1 = yn − a sinxn, (1)
xn+1 = xn + yn+1(Mod 2π), (2)

where a is a parameter and a > 0 is assumed. In the case that a < 0, we have the
same expression using the coordinate change xn �→ xn + π. In the following, we let
f(xn) = −a sin xn.
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Fig. 1. Several types of motion in phase space (a = 0.8 (left), 4
3
(right)).

The standard mapping has area-preserving and orientation-preserving proper-
ties, and it is a typical twist mapping. The standard mapping has two fixed points
(p and q). One of the fixed points, q = (0, 0), is an elliptic point when 0 < a < 4,
and is a saddle with reflection when a > 4. The other fixed point, p = (π, 0), is
always a saddle for a > 0. We can easily observe three types of motion in phase
space (see Fig. 1): (1) periodic motion, (2) quasi-periodic motion, and (3) chaotic
motion. Several important properties of the standard mapping are summarized in
Ref. 10).

2.2. Involutionary forms of the standard mapping

The standard mapping T can be factorized into two involutions h and g:

T = h ◦ g. (3)

Two involutions h and g satisfy the properties

h ◦ h = g ◦ g = id., (4)
detDh = detDg = −1. (5)

It is noted that the inverse map of T is given by T−1 = g ◦ h. If the mapping
functions have factorizations into involutions, the system possesses reversibility.11)

As the standard mapping possesses double reversibility,12),13) there are two types of
involutionary forms.
[1] The first form:

h : yn+1 = yn, xn+1 = −xn + yn, (6)
g : yn+1 = yn + f(xn), xn+1 = −xn. (7)
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Fig. 2. Symmetry lines in phase space. Two KAM curves Γ1,2 exist above and below the x-axis,

symmetrically. The explanations of the points u, v, · · · are given in the caption of Table I.

The set of fixed points of h and g give the symmetry lines illustrated in Fig. 2:

h : y = 2x, y = 2(x − π), (8)
g : x = 0, π. (9)

These symmetry lines of the first form show the left and right symmetry of KAM
curves. We use this property in the following discussion.
[2] The second form:

h′ : yn+1 = −yn, xn+1 = xn − yn, (10)
g′ : yn+1 = −yn − f(xn), xn+1 = xn. (11)

The symmetry lines are also obtained (see Fig. 2) for this case:

h′ : y = 0, (12)

g′ : y =
a

2
sinx. (13)

These symmetry lines show the symmetrical structure of two KAM curves existing
above and below the x-axis. If one KAM curve (Γ1) with rotation number ν exists
above the x-axis, another KAM curve (Γ2) with rotation number −ν must exist at
the symmetrical position corresponding to Γ1 below the x-axis. Such a situation is
illustrated in Fig. 2. The mapping T is invariant under the transformation y → y±2π.
Then, the KAM curve with rotation number 1−ν constructed by the transformation
y → y − 2π for Γ2 exists. Two KAM curves with respective rotation numbers ν and
1 − ν have the same properties. As a result, it is sufficient to study the properties
of KAM curves with 0 < ν < 0.5.

2.3. Functional equations for KAM curves

We shall derive various properties of KAM curves and the corresponding circle
mapping assuming they are Cr (r � 1).
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A KAM curve is a graph of a Lipschitz function yn = F (xn). Here we introduce
the circle map, xn+1 = G(xn), which defines the relation between xn and xn+1 on the
KAM curve. Using the mapping equations, we can derive the functional equations
for F (x) and G(x) and give the relation between F (x) and G(x):

F (x + F (x) + f(x)) = F (x) + f(x), (14)
G(x) +G−1(x) = 2x + f(x), (15)

G(x) = x + F (x) + f(x), (16)

where the suffix n is omitted.
Hereafter we use the abbreviations

ξn =
dF (xn)

dxn
, ζn =

dG(xn)
dxn

, εn =
df(xn)
dxn

.

Here ξn is the slope of the KAM curve at xn and ζn is the gradient of G(xn) at xn.
Differentiating Eqs. (14) and (15) with respect to xn, we also have the functional

equations for ξn and ζn,

ξn+1 =
ξn + εn

1 + ξn + εn
, (17)

ζn+1 = − 1
ζn

+ 2 + εn+1. (18)

§3. Some properties of KAM curves

3.1. Symmetrical structure

First, we give a property of motion of mapped points restricted on KAM curves
encircling the cylinder.
Proposition 3-1: Any KAM curve encircling the cylinder is invariant under g and
hence invariant under h.
Proof: If we prove that any KAM curve is invariant under g, its invariance under
h follows from T = h ◦ g. Since the KAM curve intersects the symmetry lines of g,
let us take a point u of intersection points. Let O(u) = {ui|ui = T iu, i ∈ Z} be its
orbit. By reversibility, g(un) = g ◦ Tnu = T−n ◦ g(u) = T−nu = u−n. This means
that the orbit of u is invariant under g.

The orbits O(u) are dense in the KAM curve. Let w be an arbitrary point of this
curve. Then there exists a sub-sequence uni (ni → ∞ as i → ∞) which converges at
w. By continuity of the reversibility, g(w) is on the KAM curve, and consequently
its orbit is invariant under g. ✷

Let us take two positions l = (xl, yl) and r = (xr, yr) satisfying the relation
r = h(l) or r = g(l) on the specified KAM curve. Using Eqs. (6) and (7), we can
derive the relations of the slopes at l and r. Here ξl and ξr represent these slopes.
In the following expressions, we can exchange the two suffices l and r.
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[1] The relation with respect to the symmetry lines (y = 2x and y = 2(x − π)) of h
is given by

ξr =
ξl

ξl − 1
. (19)

[2] The relation with respect to the symmetry lines (x = 0 and x = π) of g is given
by

ξr = −ξl − f ′(xl). (20)

Equations (19) and (20) give information on the slopes of KAM curves at their inter-
section points with the symmetry lines. Using the relation ξl = ξr at the intersection
points, we have the following results:
(1) At the intersection points of all KAM curves and the symmetry lines of h,

ξ = 0. (21)

(2) At the intersection points of all KAM curves and the symmetry lines of g,

ξ(0) = −1
2
f ′(0) =

a

2
, (22)

ξ(π) = −1
2
f ′(π) = −a

2
. (23)

Take a point A = (x, y) on the KAM curve. The point B = (x′, y′) = g(A)
also is located on the same KAM curve, due to Proposition 3-1. Using the relations
x′ = −x, y′ = y + f(x), y = F (x) and y′ = F (x′), Eq. (14) can be rewritten in the
form

F (x)− F (−x) = −f(x). (24)

Let us divide the function F (x) into even and odd parts:

F (x) = Feven(x) + Fodd(x). (25)

Then we have

Fodd(x) = −1
2
f(x). (26)

We need to determine the even part Feven(x) to obtain the full expression of the
KAM curve. This problem will be discussed later.

Here we have an important result on the slope of the KAM curves.
Proposition 3-2: The relation ξ(x) < 1 holds for all KAM curves.
Proof: Suppose that there exists a point A with ξ > 1 on the KAM curve. But by
Eq. (19), the slope at B = h(A) is positive. Let us take a small arc AA′ on the KAM
curve in the vicinity of A where the x-coordinate of A′ is larger than that of A. Note
that the y-coordinate of A′ is larger than that of A since the slope at A is positive.
The involution h maps this arc to an arc BB′ where both x and y-coordinates of B′
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Table I. The slope of KAM curves at several points. u is the intersection point of the KAM curve

and y-axis, v is the intersection point of the KAM curve and x = π, s is the intersection point

of the KAM curve and the line y = 2x, and t is the intersection point of the KAM curve and

the line y = 2(x − π).

Name Position in phase space Slope

u
def
= (0, α)

a

2

Tu (α, α) − a

2− a

T−1u (−α(+2π), α − a sinα) a cosα +
a

2− a

v
def
= (π, β) −a

2

Tv (π + β, β)
a

2 + a

T−1v (π − β, β + a sin β) −a cosβ − a

2 + a

s
def
= (γ, 2γ) 0

Ts (3γ − a sin γ, 2γ − a sin γ)
a cos γ

a cos γ − 1

T−1s (−γ(+2π), 2γ − a sin γ) a cos γ

t
def
= (δ + π, 2δ) 0

Tt (3δ + a sin δ + π, 2δ + a sin δ)
a cos δ

a cos δ + 1

T−1t (π − δ, 2δ + a sin δ) −a cos δ

are larger than those of B, since the slope of the KAM curve at B is positive. The
three points, A′, the intersection point (C) of the KAM curve and the symmetry line
of h, and B′ are located in this order on the KAM curve. Then the arc CB′ of the
KAM curve must contain the point (D) where the slope diverges. If the slope at A
is equal to 1, the value of the slope at B diverges. Then the KAM curve does not
satisfy the Lipschitz condition. This contradicts the result obtained by Birkhoff.1) ✷

In Table I, we list several properties of KAM curves (see Fig. 2) in phase space.
These properties are determined from the results mentioned above and obtained in
§3.6.
3.2. Property of the circle mapping G(x)

Here we show the symmetrical structure of G(x).
Proposition 3-3: The graph of G(x) is symmetric with respect to the lines y =
−x(+2π). Then the relation G(x) = −G−1(−x)(Mod 2π) holds (see Fig. 3).
Proof: We give proof in terms of the relation between the phase space and the
circle mapping. Allow us to list the correspondence of the phase space and the circle
mapping:
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Fig. 3. The circle mapping G(x) and its symmetry structure.

Operation in Phase Space ⇔ Operation on the Circle

g ⇔ x �→ −x

h ⇔ G(−x)

T ⇔ G(x)

Then −G−1(−x) is considered as the composition of three successive operations,
(1) x �→ −x, (2) G−1, (3) x �→ −x.

These operations are transformed into the following operations in phase space:
(1) Operate g, (2) Operate T−1, (3) Operate g.

As a result, we have

g ◦ T−1 ◦ g = g ◦ g ◦ h ◦ g = h ◦ g = T.

This final operation T is transformed into the operation G(x) of the circle mapping.
Then Proposition 3-3 follows. ✷

It is worth noting that Proposition 3-3 is derived by direct calculation using
Eq. (26). This fact implies that the reversibility (T ◦ g = g ◦ T−1) determines
the expression of Fodd(x) (see Eq. (26)), and gives the symmetry of G(x) stated in
Proposition 3-3.

Using Proposition 3-3, we now give several properties of the circle mapping.

3.3. Properties of Godd and the functional equation for Geven

We give explicit expressions of Godd and G−1
odd and derive the functional equation

for Geven.
Property 3-4: Godd(x) = G−1

odd(x) = x + 1
2f(x)(Mod 2π).
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Proof: Combining the relation of Proposition 3-3 with Eq. (15), we have

G(x)− G(−x) = 2x + f(x). (27)

Let us divide G(x) into even and odd parts:

G(x) = Geven(x) + Godd(x). (28)

As a result, Eq. (27) gives the expression of the odd function Godd:

Godd(x) = x +
1
2
f(x). (29)

Using the same method, we have

G−1
odd(x) = x +

1
2
f(x). (30)

Thus we have Property 3-4. ✷

Using Eq. (15) and Property 3-4, the relation between Geven(x) and G−1
even(x) is

derived:

Geven(x) + G−1
even(x) = 0. (31)

Combining the relation G−1(G(x)) = x, Eq. (31) and Property 3-4, the functional
equation for Geven(x) is obtained:

Geven(G(x)) = Geven(x) +
1
2
f(x) +

1
2
f(G(x)). (32)

The initial condition (for example, Geven(0)) to solve Eq. (32) is obtained as follows.
Since G(0) = Geven(0) + Godd(0) = Geven(0) and F (0) = G(0) = Geven(0), the value
of Geven(0) is determined by the initial condition (0, F (0)) in phase space.

Applying the procedure mentioned above to the circle mapping G(x + π), we
have the same results for Geven(x). Thus we have Property 3-5.
Property 3-5: The graph of the even part, the function Geven(x), has two symmetry
lines, x = 0 and x = π.

We can derive the functional equation for G′
even(x),

G′
even(G(x)) =

1
2
f ′(G(x)) +

G′
even(x) +

1
2
f ′(x)

G′
even(x) +

1
2
f ′(x) + 1

. (33)

We can also derive the functional equation for the second derivative G′′
even(x),

G′′
even(G(x)) =

1
2
f ′′(G(x)) +

G′′
even(x) +

1
2
f ′′(x)(

G′
even(x) +

1
2
f ′(x) + 1

)3 . (34)
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Differentiating Eq. (34), we can derive the functional equations for higher order
derivatives G

(n)
even(x) used in §5. Here we omit these expressions. We must com-

ment on the initial values to solve G
(n)
even(x). Symmetry gives the following initial

conditions:

G(2n−1)
even (0) = G(2n−1)

even (π) = 0. (n ≥ 1) (35)

Strictly speaking, we have no information on the initial conditions to solve G
(2n)
even(x)

(n ≥ 1). For this reason, we use the spline interpolation to determine G
(2n)
even(0) (n ≥

1). A detailed explanation of this procedure is given in Appendix D.

3.4. Structure change of KAM curves

To study the structure of a KAM curve characterized by an irrational rotation
number ν, we must plot the figures of G(x) (or Geven(x)) and its derivative G′(x)
(or G′

even(x)). To do so, we solve the functional equations for Geven and G′
even

numerically. This procedure is described in detail in Appendix A.
Note that the most important calculation in this procedure is to determine the

intersection point of the KAM curve with the symmetry line. Typical examples
obtained through numerical results are shown in Fig. 4. The symmetry of G and the
several relations mentioned in §§3.2 and 3.3 are confirmed. As for the structure of
G′

even(x), we observe the transition from a smooth curve to a notched curve when
the parameter a is increased toward the critical value ac(ν). This type of transition
is also found in KAM curves with other irrational rotation numbers, for example,
the silver mean

√
2− 1 (see Fig. 4(b)). Detailed discussion of the singular structure

of G′
even(x) is given in §5.

3.5. Estimation of maximum and minimum values of G′(x)

Here we determine the maximum value of G′(x). To do so, the property of map-
ping function Eq. (18) is used. This is different from the method used by Herman,2)

but our estimation agrees with his result. If the maximum value of ζ(x) (= G′(x)) is
M , then the minimum value ζmin is ζmin = 1

M , due to the symmetry of G(x) (Propo-
sition 3-3). The position with the maximum value M exists at position symmetric
to that with the minimum value 1

M , where the symmetry lines are y = −x(+2π).
We now determine an estimate of M . Equation (18) with a = 1 is illustrated in
Fig. 5. The lower (upper) curve represents the mapping function with εn = 1 (−1).
All mapping functions exist in the region bounded by these two curves. Then, if
there exists an integer n satisfying ζn > ζ2, the sequence {ζ−i} (i ≥ n+ 1) diverges.
As a result, we have the maximum value M = ζ2:

M =
2 + a +

√
a2 + 4a

2
. (36)

The following inequality must hold for any integer n in order for the KAM curve to
exist:

1
M

≤ ζn ≤ M. (37)
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Fig. 4. Figures (a) and (b) represent the results for the KAM curves with rotation numbers of the

golden mean (a) and the silver mean (b). The upper figures display Geven, Godd, and G, and

the lower figures display G′
even, G′

odd and G′. a=0.92 (left), and 0.97 (right) in (a), and a =0.92

(left), and 0.95 (right) in (b).
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Fig. 5. Mapping function of ζn �→ ζn−1 (a = 1).

Herman estimated the minimum value ζmin as

2 + a −√
a2 + 4a

2
≤ ζmin ≤ 1− a

2
. (38)

According to our numerical results given in Fig. 4, we have

Minimum value ≈ 1− a

2
,

Maximum value ≈ 1

1− a

2

.

To obtain a better estimate of the maximum and minimum values compared with
Eq. (37) is an open problem.

Finally we comment on the meaning of Eq. (37). If Eq. (37) does not hold, the
condition of Lipschitz continuity is broken and then the KAM curve does not exist.
Using Eq. (37), we can estimate the critical value ac (see §4).
3.6. Summary of the properties of G(x)

Finally we summarize other properties of G(x).
[1] Let A denote the position of G(0) in Fig. 3. Then,

ζ(A) = 1− a

2
, (39)

ζ(B) =
1

1− a

2

, (40)

where A = G(B). The first relation gives Eq. (22) in phase space.
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[2] At the intersection points C1 and C2 of G(x) and y = −x(+2π), the gradient of
G(x) is 1 due to Proposition 3-3.
[3] Using the same method as in [1], we have the slope at D in Fig. 3,

ζ(π) = 1 +
a

2
. (41)

This relation gives Eq. (23) in phase space.

§4. Estimation of critical values ac and ac(ν)

Using the criterion (37), we determine the critical value ac. We consider the
sequence of mapped points {T−nu} (n ≥ 1) in phase space. Hereafter we iterate
Eq. (18) to calculate the critical value. The mapping function (18) gives ζ−1 (slope
of G) at G−1(0) (T−1u in phase space):

ζ−1 =
1

2− a −
(
1− a

2

) . (42)

ζ−1 must satisfy the relation

1
M

≤ 1

1− a

2

≤ M. (43)

The second inequality gives the condition for the existence of KAM curves, a ≤ 4
3 .

The first inequality does not give a condition. From this, we obtain Proposition 4-1:
Proposition 4-1: There are no KAM curves at a > 4

3 .14)

Table II. The critical value ac.

n an n an

3 1.198 89 0.97908

5 1.116 144 0.97619

8 1.0579 233 0.97429

13 1.0250 377 0.97335

21 1.0039 610 0.97269

34 0.9914 987 0.97219

55 0.9837 1597 0.97196

Using information regarding ζ−n, we ob-
tained the improved critical values given
in Table II. The detailed procedure is
explained in Appendix B. This proce-
dure gives a sufficient condition for ac.
In fact, we decrease the value of a from
the parameter region where there are no
KAM curves. As a result, we find that
there are no KAM curves at a ≥ 0.972.

Using the residue method, Greene 15)

obtained that the KAM curve exists at a < 0.971635 · · ·. Using the interval arith-
metic, Mackay-Percival [M-P] 16) determined that there are no KAM curves at
a > 63

64 . According to the method of M-P, we need a huge number of iterations.
As we use the functional equation (18), we have a good estimation in spite of the
number of iterations up to 1597-times. Our criterion for the non-existence of a KAM
curve is slightly different from the Lipschitz criterion used by M-P.

Using the property that if an orbit goes slowly and quickly then there are no
KAM curves between the slower and faster rates, the critical value was estimated as
a = 0.9718 by Jungreis.17) But it is not easy to apply this method to calculate ac(ν).
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Table III. The critical values for several KAM curves and two exponents α and β. Note that the

KAM curve with rotation number
√
2− 1 (for example) do not exist at a = 0.9575.

Rotation Number ac(ν) α (±0.002) β (±0.002)

(
√
5− 1)/2 0.9717 0.292 0.072√
2− 1 0.9575 0.302 0.124

(
√
13− 3)/2 0.8909 0.327 0.116√
7− 2 0.8809 0.350 0.167√
3− 1 0.8762 0.327 0.165√
6− 2 0.8735 0.357 0.185√
5− 2 0.8048 0.350 0.185√
8− 2 0.6842 0.423 0.266√
10− 3 0.6475 0.434 0.254

Using the mapping function (18) and the criterion (37), we can estimate the
critical value ac(ν) for the KAM curve (chief KAM curve) with any irrational rotation
number ν. The procedure is described in Appendix C. In this procedure, we need a
precise position of the KAM curve. As we do not have the exact position numerically,
we assume that KAM curves in the ε-neighborhood of the chief KAM curve have
the same stability as the chief KAM curve. This implies that nearby KAM curves
exist (disappear) if the chief KAM exists (disappears). If we take the limit ε → 0,
we obtain ac(ν), but its value is an upperbound (see also the caption in Table III).
In Table III, several critical values are given. From Table III, we also see that if the
KAM curve with rotation number equal to the golden mean is the last KAM curve
in the standard mapping, there are no KAM curves at a ≥ 0.9717.

§5. Smoothness of KAM curves

In order to study the singular behavior of KAM curves in the vicinity of their
critical values, we directly calculate the length of the graph of Geven(x) and that of
the graph of the n-th derivative G

(n)
even(x). For example, the length L(Geven(x)) of

Geven(x) is calculated in terms of the following two formulas:

FN : L(Geven(x)) =
n+1∑
i=1

∆xi

√
1 +

(
∆Geven(xi)

∆xi

)2

, (44)

FD : L(Geven(x)) =
n+1∑
i=1

∆xi

√
1 + (G′

even(xi))
2. (45)

Here we explain the notation in FN. We calculate the sequences {xi} and {Geven(xi)}
(i = 1, · · · , n), and sort the sequence {xi} with {Geven(xi)} in order of increasing
values. The two sorted sequences are renamed {xi} and {Geven(xi)}. Note that
∆xi = xi − xi−1, x0 = 0, xn+1 = 2π, ∆Geven(xi) = Geven(xi)− Geven(xi−1), and
Geven(0) = Geven(2π) (the initial value). The same notation is also used in FD.

If the length estimated by FN is equal to that estimated by FD, the function
Geven(x) is considered once differentiable. Using the same method, we calculate
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Table IV. The lengths estimated by two formulas. The asterisk means that we do not calculate the

length, and a blank entry indicates that the calculated lengths do not converge. The explanation

is given in Appendix D.

Formula a L(Geven) L(G′
even) L(G′′

even) L(G
(3)
even) L(G

(4)
even) L(G

(5)
even)

FN 0.9500 6.424 7.496 61.09 3.744E+03 4.464E+05 8.119E+08

FD 0.9500 6.424 7.496 61.09 3.744E+03 4.464E+05 *

FN 0.9600 6.431 7.755 114.9 1.364E+04 3.119E+06 1.072E+09

FD 0.9600 6.431 7.755 114.9 1.364E+04 3.119E+06 *

FN 0.9670 6.436 8.130 295.5 9.162E+04 5.464E+06 1.072E+09

FD 0.9670 6.436 8.130 295.5 9.162E+04 5.464E+06 *

FN 0.9700 6.438 8.540 862.4 7.881E+05

FD 0.9700 6.438 8.540 862.4 *

FN 0.9715 6.438 10.95

FD 0.9715 6.438 *

L(G(n)
even(x)) (n = 1, · · · , 5) and check the differentiability.
When we use the formula FN, we need the data of Geven(xn) calculated by

Eq. (32). On the other hand, for the formula FD, we use the data of G′
even(xn)

calculated by Eq. (33). As the initial values of G
(2n)
even(xn) are not determined theo-

retically, we calculate them using a numerical method. This procedure is described
in Appendix D. Once the data of G

(n)
even(xn) are obtained, it is easy to calculate its

length.
The numerical results for the golden mean KAM curve are given in Table IV.

The two lengths are in agreement even in the vicinity of critical value. The same
result is obtained for the KAM curves with rotation numbers

√
2 − 1 (silver mean)

and (
√
13− 3)/2. As a result, we have the following conjecture:

Conjecture 5-1: The function Geven(x) is Cr (r � 1) at a < ac(ν). Smoothness is
suddenly lost at ac(ν).

Next we show the parameter dependence of lengths of G
(n)
even(x) (n ≥ 0) for KAM

curves with the rotation numbers of the golden mean and of the silver mean (see
Fig. 6). We list three numerical results:
(1) The length of the graph of Geven(x) slightly increases when the parameter a
increases to the critical value, but the length at the critical value is finite.
(2) The length of the graph of G′

even(x) diverges very slowly as (ac(ν) − a)−α with
α = 0.056 for the golden mean and α = 0.058 for the silver mean.
(3) The length of the graph of G

(n)
even(x) (n ≥ 2) diverges very rapidly as (ac(ν)−a)−α

with α = n − 1 + ε (0 < ε < 1).
According to these results and to the composition of G′(x) constructed by

G′
odd(x) (the bounded variation function) and G′

even(x), we arrive at the property
that the function G(x) is once differentiable, but the graph of G′(x) does not have
length at the critical value. Then G′(x) is not a function of bounded variation at
the critical value.

Next we show that the critical curve is not C1+γ (0 < γ < 1). Here we define
the γ-Hölder derivative of ξ(xn):
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Fig. 6. (continued)

ηγ(x) =




limx′→x+
ξ(x′)− ξ(x)
(x′ − x)γ

,

limx′→x−
ξ(x′)− ξ(x)
−|x′ − x|γ .

(46)

If the γ-Hölder derivative of ξ(x) is equal to zero at all points on the KAM curve,
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Fig. 6. Figure (a) ((b)) displays the lengths L(G
(n)
even(x)) (0 ≤ n ≤ 5) of the graph of G

(n)
even(x)

for the golden(silver) mean KAM curve. αn is the exponent in the expression L(G
(n)
even(x)) ∝

(ac − a)−αn . (a) α1 = 0.056, α2 = 1.01, α3 = 2.08, α4 = 3.13 and α5 = 4.19. (b) α1 =

0.058, α2 = 1.04, α3 = 2.15, α4 = 3.21 and α5 = 4.34.

the KAM curve is Cr (r ≥ 2). If the KAM curve is C1+γ , then the γ-Hölder
derivative of ξ(x) has a bounded value away from zero at some position x on the KAM
curve. Using Eq. (17), we have the following relation between ηγ(x) and ηγ(G(x)):
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ηγ(G(x)) =
ηγ(x)

(G′(x))2+γ . (47)

Then we have

log
ηγ(xn)
ηγ(x0)

= −(2 + γ)
n−1∑
i=0

logG′(xi) , (48)

where x0 = x and xi = Gi(x). Since G′(x) at a = ac(ν) is not a function of bounded
variation, the sum on the r.h.s. of Eq. (48) is not bounded, and ηγ(xn) is not bounded.
This means that the critical curve is not C1+γ (0 < γ < 1). Then the critical curve
is at most C1. Combining the above results, we have the main result that the critical
curve is C1, but its derivative is not a function of bounded variation. This result
implies that the graph of F ′(x) of the critical curve has infinitely many folds.

§6. Distribution of mapped points on critical curves

Here we study the structure change of the density distribution ρ(x) (0 ≤ x < 2π)
of mapped points on a KAM curve. As ρ(x) is invariant under T , the Frobenius-
Perron functional equation holds for ρ(x):

ρ(xn+1) =
ρ(xn)
G′(xn)

. (49)

Using Eq. (49) with ρ(0) = 1 (for example), T , and Eq. (18) for G′(x), we can easily
determine the structure of ρ(x).

Equation (49) gives the relation

log
ρ(xn)
ρ(x0)

= −
n−1∑
i=0

logG′(xi) . (50)

Since G′(x) is not a function of bounded variation at the critical value, the ratio
ρ(xn)/ρ(x0) in Eq. (50) is not defined. This shows that the function ρ(x) has a
fractal property only at a = ac(ν).

Next we give the symmetry structure.
Property 6-1: ρ(x) = ρ(2π − x).
Proof: Using Eq. (49), we have

ρ(2π − x)
G′(2π − x)

= ρ(G(2π − x)) = ρ(G−1(x)) . (51)

Here we used the relation of Proposition 3-3 to derive the last equality. Combining
Eq. (51) and the relation G′(2π − x) = (G−1(x))′, we have the relation

ρ(2π − x) = ρ(G−1(x))G′(2π − x) = ρ(G−1(x))(G−1(x))′ =
ρ(G−1(x))
G′(G−1(x))

= ρ(x) .

(52)
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Fig. 7. The density distribution functions ρ(x) for several rotation numbers. The phase plot around

the KAM curve is shown in the upper part of each figure. The horizontal axis is the x-axis (0 ≤
x < 2π). (a) golden mean (a = 0.97), (b) silver mean (a = 0.888), (c) (

√
13− 3)/3 (a = 0.888),

and (d)
√
7− 2 (a = 0.875).

This completes the proof. ✷

Property 6-2: ρ′(0) = ρ′(π) = 0 at a < ac(ν).
Proof: This is trivial since there exist G′(x) and G′′(x) at a < ac(ν). ✷

In Fig. 7, the distributions for four rotation numbers in the vicinity of the critical
values are shown, and the KAM curve itself and several types of motion near the
KAM curve are also illustrated. With our numerical results, we can list the universal
properties which hold for all KAM curves in the vicinity of the critical values (see
Fig. 8):
(1) Increasing a toward ac(ν), the distribution at u decreases toward zero as ρ(u) ∝
(ac(ν) − a)α (α > 0). Then, a steep-walled valley appears at points Tnu (n =
0,±1, · · ·).



20 Y. Yamaguchi and K. Tanikawa

Fig. 8. The increasing and decreasing of distribution functions ρ(x) at u, v, s and t.

(2) Increasing a toward ac(ν), the distributions at v, s, and t diverge as ρ ∝ (ac(ν)−
a)−β (β > 0). The peak appears at points Tnv, Tns, and Tnt (n = 0,±1, · · ·).

Two exponents α and β are obtained in Table III. As a result, we have a con-
jecture:
Conjecture 6-3: The KAM curve with golden mean rotation number corresponds
to the minimum values of the two exponents α and β among all KAM curves.
This conjecture corresponds to the fact that the KAM curve with golden mean ro-
tation number is the most stable and persistent one. Hunt et al.9) calculated the
information dimension of the critical KAM curves and reported that the KAM curve
with the golden mean rotation number has the maximum information dimension less
than 1. But the relation between our result and the last KAM curve is not under-
stood. We believe that there exists a relation between the information dimension
and two exponents α and β.

Our main result in §5 together with the results in this section give a new in-
terpretation of the breakup of a KAM curve. The property of bounded variation of
G′(x) guarantees the existence of KAM curves. At a < ac(ν), the bounded variation
of G′(x) holds and KAM curves are very smooth (Cr (r � 1)), contrary to our
expectation. Since the property of bounded variation for G′

even(x) does not hold at
the critical value, holes, i.e., the points of zero density, at {T±nu (n = 0, 1, · · ·)} may
appear at a = ac(ν). Holes are mapped to holes. As a result, on the critical KAM
curve, there appear two kinds of motion. One is the motion on the full Lebesgue
measure set, except the holes. This is not the so-called Aubry-Mather set,18) but
may be its predecessor to a > ac(ν). The other is a set of holes. This is a countable
invariant set. This may be a predecessor to the wandering points in the circle map,
and is a candidate of gaps of the Aubry-Mather set for a > ac(ν).
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§7. Concluding remark

We now comment on the origin of the self-similar-like structure of ρ(x). From
Fig. 7, we observe that the distribution increases as a whole if saddles exist in
the neighborhood of the KAM curve, and it decreases if large elliptic islands exist.
For example, the elliptic islands with rational rotation numbers characterized by the
Farey series accumulate toward u. This accumulation cannot be observed around v, s,
and t. From Eq. (49), we find that the change of local structure of ρ(x) is influenced
by the absolute value of G′′(x) corresponding to the curvature of the KAM curve. The
curvature is strongly affected by the existence of periodic points around the KAM
curve. In order to make clear this property, we have to elucidate the accumulation
structure of periodic points to the KAM curve and their stability without using
the assumption of scaling. The reason is the following. Two interpretations of the
hierarchical structure around KAM curves have been proposed, the renormalization
group theory by Greene, Mackay, Percival, and Shenker-Kadanoff,19) and the theory
proposed by Morbidelli and Giorgilli (MG).20) The MG theory gives the existence
of a neighborhood almost completely full of slave KAM tori around a chief KAM
torus. In Ref. 6), the same conclusion was obtained. Recent numerical calculations
by Lega-Froeschlé 21) support the MG theory.
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Appendix A

We describe the procedure to solve the functional equations for Geven and G′
even.

We can use Procedure I when the initial condition is taken on the x = π-axis.
Procedure I: Calculation of Geven(x) and G′

even(x).
[Step 1] This step is used to find the intersection point (0, y0) of a KAM curve
with the y-axis. Take an initial position u = (0, y) (0 ≤ y < 2π), and calculate
the sequence {Tnu} (n ≥ 1) and the rotation number ν(y). Using this information,
determine the value y0 to desired precision to give the KAM curve with ν.
[Step 2] Calculate the mapping T , Geven, and G′

even(x) with the following initial
conditions:

(1) the position of phase space (0, y0).
(2) the initial value of Geven(x): Geven(0) = y0.
(3) the initial value of G′

even(x): G′
even(0) = 0.

Appendix B

Using the following procedure and information regarding ζ−n, we can numerically
estimate the critical value ac. We can use Procedure II when the initial condition is
taken on the x = π-axis.
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Procedure II: Calculation of the critical value ac.
[Step 1] Input n (≥ 2).
[Step 2] Input a.
[Step 3] Take an initial position (0, y) (0 ≤ y < 2π) on the y-axis (by symmetry, we
need only consider the interval 0 ≤ y ≤ π. See the last statement in §2.2.). Calculate
the sequence {u−n = T−nu} (n ≥ 1). Using Eq. (18) and the x-coordinate of u−n,
calculate ζ−1, · · · , ζ−n in this order. If ζ−i (1 ≤ i ≤ n) does not satisfy the relation
(37), we delete the initial position in the interval (0, π) of initial conditions. If all
ζ−i (1 ≤ i ≤ n) satisfy the relation (37), we keep such an initial position. We call
this a “remaining interval”.
[Step 4] Go back to [Step 3] and change the initial position. If the remaining interval
exists after examination of the whole interval (0, π), go back to [Step 2] and increase
the value of a.
[Step 5] Repeating [Steps 2-4], if we find the values of a at which the remaining
interval does not exist, we set an =(Minimum of a).
[Step 6] Go back to [Step 1] and increase the value of n.

Appendix C

Let ν(y) be the calculated rotation number for the orbit with the initial condition
(0, y). We can use Procedure III when the initial condition is taken on the x = π-axis.
Procedure III: Calculation of the critical value ac(ν).
[Step 1] Input the rotation number ν.
[Step 2] Input a.
[Step 3] Take an initial position u = (0, y) (0 ≤ y < 2π), and calculate the sequence
{Tnu} (n ≥ 1) and the rotation number ν(y). Find two initial positions, ymax and
ymin, satisfying ν(ymax) > ν and ν(ymin) < ν with the condition ∆y = ymax−ymin < ε
(say, 10−7).
[Step 4] Check the criterion (37) for the orbit starting from the initial condition
(0, yi) (yi = ymin + ∆y × i/10 : i = 0, · · · , 10). If no orbits satisfy Eq. (37), decrease
the value of a and go back to [Step 3]. If this is not the case, increase a and go back
to [Step 3]. Stop the procedure if the desired precision for a is obtained.

Appendix D

We can use Procedure IV when the initial condition is taken on the x = π-axis.
Preparation and stopping condition
The mapped points {xn} with x0 = 0 and Geven(xn) are calculated and all data
are sorted. The initial position Geven(0) is determined by the rotation number.
Increasing the total number of data from 210 to 217, we check the convergence of
calculated lengths. If the convergence is confirmed, we stop the doubling the number
of data. If the convergence is not confirmed, the length is not listed in Table IV.

Note that we cannot calculate the length of G
(n)
even(x) (n ≥ 2) if the length of

G′
even(x) is not calculated.
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Procedure IV: Calculation of lengths.
[Step 1] Referring to the data {xn} and {Geven(xn)}, calculate G′

even(xn) with
G′

even(0) = 0. Sort the sequence {G′
even(xn)} according to the position xn.

[Step 2] After interpolating the sorted data {G′
even(xn)}, determine the second

derivative. The spline interpolation is used.
[Step 3] Using a suitable initial condition for G′′

even(0), calculate the functional
equation (34). Sort the data {G′′

even(xn)}.
[Step 4] Change G′′

even(0) in order that the difference between two series determined
in [Steps 3 and 4] is in the acceptable error range. Here the method of regular false
is used. The same method is used in [Step 8].
[Step 5] Calculate the functional equation for G

(3)
even(x) with G

(3)
even(0) = 0. Here

G′′
even(0) determined in [Step 4] is used. Sort the data {G(3)

even(xn)}.
[Step 6] After interpolating the sorted data {G(3)

even(xn)}, determine the 4-th deriva-
tive.
[Step 7] Using a suitable initial condition for G

(4)
even(0), calculate the functional

equation for G
(4)
even(x). Sort the data {G(4)

even(xn)}.
[Step 8] Change G

(4)
even(0) in order that the difference between two series determined

in [Steps 7 and 8] is in the acceptable error range.
[Step 9] Calculate the functional equation for G

(5)
even(x) with G

(5)
even(0) = 0. Here

G′′
even(0) and G

(4)
even(0) determined in [Step 8] are used. Sort the data {G(5)

even(xn)}.
[Step 10] Calculate the lengths of G

(n)
even(x) (1 ≤ n ≤ 5).
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