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By using the soft pion theorem in inclusive reactions, the soft pion contribution to the
structure function F2 in the nucleon is estimated. It is shown that this contribution produces
such a large flavor asymmetry in the light sea quark distributions that it gives about 30–50%
of the NMC deficit in the Gottfried sum.

§1. Introduction

The modified Gottfried sum rule 1) has accounted for the NMC deficit in the
Gottfried sum 2) almost model independently. It has shown that the deficit is the
reflection of the hadronic vacuum originating from the spontaneous chiral symmetry
breakings. In this sense the physics underlining this algebraic approach has a feature
common to that of the mesonic models reviewed in Ref. 3). However, in the algebraic
approach, importance of the high energy region not only in the theoretical under-
standing but also in numerical analysis has been made clear. Further, the numerical
prediction based on this sum rule agrees precisely with the recent experimental value
from the E866/NuSea collaboration. 4) This experiment also gives us the light anti-
quark difference (d̄(x)− ū(x)) and the ratio d̄(x)/ū(x) in the range 0.02 ≤ x ≤ 0.345.
An unexpected finding is that the asymmetry seems to disappear at large x. On
the other hand, a typical calculation using the mesonic models based on the πNN
and the πN∆ processes account for about half of the NMC deficit. 3) According to
the E866 experiment, it should be possible to account for the remaining half of the
NMC deficit by contributions in the medium and small x regions. Unfortunately,
the approach using the mesonic models cannot account for the magnitude from these
regions definitely. In fact, the πN∆ process partly cancels the positive contribution
to (d̄(x) − ū(x)) from the πNN process. The contributions from the higher reso-
nances and from the multiparticle states are obscure. Hence the best we can say is
that the mesonic models explain the flavor asymmetry of the light sea quarks qual-
itatively. These facts suggest that there may exist a dynamical mechanism so far
overlooked to produce the flavor asymmetry at medium and high energy, and that it
may compensate for the above-mentioned flaw of the mesonic models. In this paper,
it is shown that the soft pion theorem in the inclusive reaction at high energy 5) can
account for about 30–50% of the NMC deficit, where we take its magnitude as 0.07,
following the E866 experiment 4) for definiteness.
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§2. Soft pions at high energy

Since the soft pion theorem in the inclusive reaction at high energy is not well
known, let us first explain it briefly. Usually, the soft pion theorem has been con-
sidered to be applicable only in low energy regions. However in Ref. 5), it has been
found that this theorem can be used in inclusive reactions at high energy if the Feyn-
man scaling hypothesis holds. In the inclusive reaction π + p → πs(k) + anything,
with πs being the soft pion, it states that the differential cross-section in the center
of mass (CM) frame defined as

f(k3, �k⊥, p0) = k0 dσ

d3k
, (1)

where p0 is the CM frame energy, scales as

f ∼ fF

(
k3

p0
, �k⊥

)
+
g(k3, �k⊥)
p0

. (2)

If g(k3, �k⊥) is not singular at k3 = 0, we obtain

lim
p0→∞

fF

(
k3

p0
, �k⊥ = 0

)
= fF (0, 0) = lim

p0→∞
f(0, 0, p0). (3)

This means that the π mesons with the momenta k3 < O(p0) and �k⊥ = 0 in the
CM frame can be interpreted as the soft pions. This fact holds even when a scaling
violation effect exists, since we can replace the exact scaling by the approximate one
in this discussion. In Weinberg’s language, these soft pions correspond to semi-soft
pions. 6) The important point of this soft pion theorem is that the soft pion limit
cannot be interchanged with the manipulation to obtain the discontinuity of the
reaction a+b+ π̄s → a+b+ π̄s. We must first take the soft pion limit in the reaction
a+ b→ πs + anything. This is because the soft pion attached to the nucleon (anti-
nucleon) in the final state is missed in the discontinuity of the soft pion limit of the
reaction a+ b+ π̄s → a+ b+ π̄s. 5)

Now, based on the null-plane formalism, this soft pion theorem has been ex-
tensively studied in Ref. 7). In the usual equal-time formalism, the contribution
where the soft pion is attached to the nucleon (anti-nucleon) depends on its velocity,
because the one particle helicity matrix element of the axial vector current takes
the form 〈p, h|J50

a (0)|p, h′〉 = 2hp0gA(0)vδhh′ , where h and h′ denote the helicity
and v = |�p|/p0. On the other hand, in the null-plane formalism it takes the form
〈p, h|J5+

a (0)|p, h′〉 = 2hp+gA(0)δhh′ , where the light-like helicity base is used in this
case. Hence in the null-plane formalism, the velocity factor is always 1, and the
ambiguity from this part disappears. By using light-cone current algebra 8) in the
inclusive lepton-hadron scatterings, the theoretical prediction in the case of the soft
π− has been compared with the data for π− production in the central region, and
it has been suggested that the mechanism proposed in Ref. 5) should be applied to
directly produced pions, i.e., pions not produced through the decay from the reso-
nance. 9) In Ref. 10), the cut vertex formalism 11) is used instead of the light-cone
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current algebra, and the charge asymmetry in the central region in the inclusive
lepton-hadron scatterings is considered. This is because the pions from the reso-
nance decay product due to the strong interaction cancel out in the asymmetry in
the central region, and hence the experimentally measured asymmetry is mainly due
to directly produced pions. It has been found that the experimental value roughly
agrees with the theoretical prediction based on the soft pion theorem in the inclusive
reactions. Several years ago, the photoproduction version of the modified Gottfried
sum rule was studied, and it was found that the soft pion contribution at high energy
plays an important role in satisfying the sum rules. 12)

§3. Contribution to the Gottfried sum

Let us now consider the reaction γV (q) + nucleon(p)→ πs(k) + anythings, where
γV represents the virtual photon. We take the soft pion limit kµ → 0 by first setting
�k⊥ = 0, k+ = 0 and then taking k− → 0 in the scattering amplitude. In this limit
we can classify it into three kinds of terms. The type (a) term is the amplitude in
which the proper part of the axial-vector current attaches to the initial nucleon. The
type (b) term is the amplitude in which the proper part of the axial-vector current
attaches to the final nucleon or anti-nucleon. The type (c) term is the amplitude
which comes from the commutation relation on the null-plane. Then by taking the
square of the amplitude in the soft pion limit, we construct the hadronic tensor.
Following Ref. 7), we classify the contribution to the hadronic tensor as follows: The
term coming from the type a†a is Aµν

1 , that from the type a†c+c†a is Aµν
2 +Aµν

3 , that
from the type b†b is Bµν

1 , that from the type b†c+c†b is Bµν
2 +Bµν

3 , that from the type
a†b+ b†a is Cµν

1 , and that from the type c†c is Dµν
4 , where a, b and c denote the type

of the amplitude in the soft pion limit. Now, in inclusive reactions, the kinematic
variables in the initial state are unconstrained in the soft pion limit. We can take
the usual deep-inelastic limit. The hadronic tensor is light-cone dominated in the
deep-inelastic limit. Hence we can use the light-cone current algebra and determine
how the soft pion piece is related to the structure functions in the total inclusive
reactions. In the perturbative analysis in QCD the Q2 dependence can be taken into
account by the cut vertex formalism suitable for light-cone dominated processes.
This is because in our case the hadronic tensor is not short distance dominated in
the short distance limit as in the hadonic tensor in the total inclusive reaction which
is expressed by the matrix element of the commutation relation of the currents. In
the soft pion limit, surviving pole terms are restricted by the pion’s charge. For
example, in the π−s case, the proper part of the axial-vector current attached to the
initial proton is prohibited by charge conservation. Because of the asymmetry of this
kind we encounter terms which cannot be expressed by the commutation relation.
This prevents us from demonstrating the short distance dominance in the short
distance limit. Thus the usual method, which makes the short distance expansion
first and then continues it analytically to the light-cone with use of the dispersion
relation, cannot be applied. The asymmetry discussed above, together with the fact
that nucleon charge is changed when the proper part of the axial-vector current
corresponding to the charged pion is attached to the nucleon, is the origin of the
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charge asymmetry in the soft pion limit. Now the contribution from Bµν
2 + Bµν

3

and Cµν
1 can be neglected in the deep-inelastic region. In these terms, the positive

helicity state of the final nucleon (anti-nucleon) and the negative one contribute
oppositely in sign, and hence their contribution at high energy can be expected to
be very small, while the contribution in the low energy region is suppressed by the
form factor effect in the deep-inelastic region. Thus we consider the contribution
only from Aµν

1 , Aµν
2 + Aµν

3 , Bµν
1 and Dµν

4 . Since the detailed expressions are given
in Refs. 7) and 10), it is straightforward to obtain the soft pion contribution to the
structure function F2. Adding the contributions from the soft π+

s , π
−
s and π0

s , and
subtracting the contributions to F en

2 from those to F ep
2 , we obtain

(F ep
2 − F en

2 )|soft
=
Iπ
4f2

π

[g2
A(0)(F

ep
2 − F en

2 )(3〈n〉 − 1)− 16xgA(0)(g
ep
1 − gen

1 )], (4)

where Iπ is the phase space factor for the soft pion defined as

Iπ =
∫
d2�k⊥dk+

(2π)32k+
. (5)

Here 〈n〉 is the sum of the nucleon and anti-nucleon multiplicity defined as 〈n〉 =
〈n〉p + 〈n〉n + 〈n〉p̄ + 〈n〉n̄. In Eq. (4), the contribution coming from Dµν

4 cancels.
Among the terms proportional to g2

A(0), that which has a factor 〈n〉 comes from Bµν
1

and the other one comes from Aµν
1 , and the term proportional to the spin-dependent

function (gep
1 − gen

1 ) comes from Aµν
2 + Aµν

3 . Note that this spin-dependent term is
obtained in the approximation in which the sea quark contribution to (gep

1 − gen
1 ) is

ignored. Without this approximation, 16(gep
1 − gen

1 ) in Eq. (4) should be replaced by
24(gep

1 − gen
1 )− 4

3(g
ν̄p
1 − gνp

1 ).
Now, as explained, the soft pion contribution in the inclusive reaction cannot be

obtained from the discontinuity formula in the sense that the interchanging the order
of the manipulation to obtain the discontinuity formula and taking the soft pion limit
is impossible. Because of this fact, we must revise the structure function (F ep

2 −F en
2 )

as (F ep
2 − F en

2 ) = (F ep
2 − F en

2 )u + (F ep
2 − F en

2 )|soft, where the suffix u specifies the
usual one, which satisfies the generalized unitarity. In the parton model, using the
impulse approximation, the structure function is obtained as the imaginary part of
the incoherent elastic scattering of the virtual photon off quarks. Thus the soft pion
piece is not included in the parton model in general. However, in the deep inelastic
region we parametrize the structure function by the quark distribution functions.
Hence we should revise them to include the soft pion contributions. Now the soft
pion contributes to the structure function (F νp

2 −F ν̄p
2 ), and the Adler sum rule fixes

the valence quark distribution as
∫ 1
0 dx(uv − dv) = 1. Hence the phenomenologically

determined valence quark distribution (uv−dv), which already satisfies the constraint
effectively, takes the contribution from the soft pion piece, since the Adler sum
rule is satisfied only if this contribution is taken into account. Then we use these
valence quark distributions to fit the structure function (F ep

2 − F en
2 ). Therefore

the soft pion piece (F ep
2 − F en

2 )|soft should be effectively taken into account in the
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phenomenologically determined sea quark distributions. Thus, by assuming that the
light sea quark distribution is equal to its antiquark distribution for simplicity, we
can express (F ep

2 − F en
2 )|soft as the asymmetry of the antiquark distribution as

(F ep
2 − F en

2 )|soft = −2
3
x(d̄− ū)|soft. (6)

To estimate the magnitude of this asymmetry, we approximate F ep
2 , F

en
2 , gep

1 and gen
1

on the right-hand side of Eq. (4) by the valence quarks distribution functions at
Q2

0 = 4 GeV2. 13) As the multiplicity of the nucleon and antinucleon, we set

〈n〉 = a loge s+ 1, (7)

where s = (p + q)2. The parameter a is fixed to 0.2 in consideration of the proton
and the anti-proton multiplicity in the e+e− annihilation such that a loge

√
s with√

s replaced by the CM energy of that reaction agrees with the multiplicity of that
reaction. 14) We estimate the pion phase space factor Iπ as follows. We assume
approximate Feynman scaling. Then, we regard the directly produced pions in the
virtual-photon and the target-nucleon center of mass (CM) frame which satisfy the
two conditions as soft pions.
(1) The transverse momentum satisfies |�k⊥| ≤ bmπ.
(2) The Feynman scaling variable xF = 2k3/

√
s satisfies |xF | ≤ c.

Here we take the momentum k in the CM frame and assume the constant b is near
1, and c is near 0.1. These values are fixed based on the previous works 9), 10) which
showed that the consideration from directly produced pions in the central region in
the CM frame as deduced from the experimentally measured quantity, is of the same
order as the soft pion contribution. The experimentally expected values were always
larger, but the differences were within a factor of 2. The upper and the lower limit
of the integral with respect to k+ in the phase space factor Iπ are restricted by the
condition (2). The lower limit of k+ behaves as O(1/

√
s) at high energy. Because

the soft pion limit is the finite part as kµ → 0, the factor 1/k+ in Iπ greatly enhances
the soft pion contribution. Performing the explicit integration, we obtain the phase
space factor Iπ as

Iπ =
1

16π2


(b2 + 1)m2

π loge



√
(1 + b2)m2

π + c2s
4 + c

√
s

2√
(1 + b2)m2

π + c2s
4 − c

√
s

2




− m2
π loge



√
m2

π + c2s
4 + c

√
s

2√
m2

π + c2s
4 − c

√
s

2


+ c

√
s



√
(1 + b2)m2

π +
c2s

4
−
√
m2

π +
c2s

4




.

(8)

A typical example of the antiquark asymmetry (d̄− ū)|soft given by Eqs. (4) and (6)
is given in Fig. 1 for a = 0.2, b = 1, and c = 0.1 in the range 0.05 ≤ x ≤ 0.6.
Further, to see the soft pion contribution to the asymmetry (d̄ − ū) qualitatively,
we plot the value of x(d̄ − ū) of the CTEQ4M 15) fit at Q2 = 4 GeV2 in Fig. 2.
From Fig. 2 we can recognize that the soft pion contribution to the Gottfried sum
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Fig. 1. The soft pion contribution to d̄ − ū.
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Fig. 2. The soft pion contribution to x(d̄ − ū).
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is large because the small x tail is slowly decreasing. However extrapolation of the
theoretical curve to the very small x region cannot be trusted, because the input
distribution cannot be trusted in the very small x region. Hence, we should cut the
integral somewhere in the very small x region. While, theoretical predictions indi-
cate that the contribution above x = 0.3 may be large, the contribution from this
region to the Gottfried sum is small. Further, the phase space constraint from this
region may become more stringent. In any case, it rapidly becomes zero as we go
to large x. Now, in the medium x region, the small bump in Fig. 2 may be related
to a small excess of the E866 data, compared with the contribution predicted by
the meson cloud model, 4) since the soft pion contribution should be added to the
contribution predicted by the meson cloud model as a background contribution. By
taking these facts into consideration, we investigate J(α, β) =

∫ β
α

dx
x (F ep

2 − F en
2 )|soft

for various values of a, b and c. For a = 0.18, b = 1, and c = 0.1 we have
J(10−4, 0.2) = −0.019, J(10−5, 0.2) = −0.022, and J(10−6, 0.2) = −0.024. For
a = 0.20, b = 1, and c = 0.1, we have J(10−4, 0.2) = −0.018, J(10−5, 0.2) = −0.021,
and J(10−6, 0.2) = −0.023. For a = 0.22, b = 1, and c = 0.1, we have J(10−4, 0.2) =
−0.017, J(10−5, 0.2) = −0.019, and J(10−6, 0.2) = −0.021. Thus the effect of the
change of a consistent with the experimental value of the multiplicity data for the
e+e− experiment is small. The extrapolation of the integral to smaller values of x
make the value of J smaller, but the magnitude to be added to the value of J due
to this extrapolation is not so large. For example for a = 0.20, b = 1, and c = 0.1,
we have J(10−9, 1) = −0.030 and J(0.2, 1) = −0.005. To understand the effect
of the change of c, we consider the case a = 0.2, b = 1, and c = 0.05 and obtain
J(10−4, 0.2) = −0.012, J(10−5, 0.2) = −0.015, and J(10−6, 0.2) = −0.017. Thus the
effect of this change is a 25% reduction compared with the case c = 0.1. We assume
that b takes a value near 1, except in the large x region at low energy, where the
allowed phase space becomes a ball rather than a cylinder defined by the conditions
(1) and (2). This causes a more rapid decrease at large x than that shown in Fig. 2.
However, the change in this region does not give a sizable effect to the value of J .
Though we cannot say the exact magnitude, we see that the soft pion contribution
has a sizable effect on the NMC defect. Based on the above analysis, we estimate
that J(0, 1) takes a value in the range −0.04 – −0.02.

§4. Conclusion

The soft pion theorem in the inclusive reaction is very general, and it is useful if
an approximate scaling, such as the Feynman scaling, holds. The magnitude of the
contribution is non-negligible, as shown in Refs. 9) and 10) and also in the present
example. In fact, it can reach about 30 – 50% of the NMC deficit. This is just
the amount missing in typical calculations using the mesonic models. 3) The main
contribution from the soft pion comes from the medium and high energy regions,
where the mesonic model lacks predictive ability and where the algebraic approach
has been found to be important.
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