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We propose the formulation of a second quantization of a bosonic theory by generalizing
the method of filling the Dirac negative energy sea for the case of fermions. We interpret
our results as implying that the correct vacuum for the bosonic theory is obtained by adding
minus one boson to each single particle negative energy state while the positive energy states
are empty. The boson states are divided into two sectors: the usual positive sector consisting
of states with a positive (or zero) number of bosons, and the negative sector,consisting of
states with a negative number of bosons. Once a state enters the negative sector, it cannot
return to the usual positive sector through an ordinary interaction, due to the presence of a
barrier.

To study this problem, a toy model, in which the filling of the empty fermion Dirac
sea and the removal of bosons from the negative energy states has not yet been performed,
has been proposed. We put forward such a naive vacuum world in the present paper. A
subsequent paper1) will treat various properties: the analyticity of the wave functions, the
interaction and a CPT-like theorem in the naive vacuum world.

§1. Introduction

There is a well-known method, though not popular nowadays, to carry out the
second quantization of relativistic fermions by imagining that there is a priori a
so-called naive vacuum in which no fermions, neither positive energy nor negative
energy, are present. However, this vacuum is unstable, and for this reason, the
negative energy state becomes filled. In this way, the Dirac sea is formed.3), ∗∗∗) This
process by which an initially empty Dirac sea becomes filled seems to make sense only
for fermions, to which the Pauli principle applies. In this way the “correct vacuum”
is formed out of a “naive vacuum”, the former yielding the proper phenomenology.
Formally, by filling the Dirac sea, we define the creation operators b+(

⇀
p , s, ω) for

holes, which are equivalent to the destruction operators a(− ⇀
p ,−s,−ω) for negative

energies −ω and prossessing opposite quantum numbers. This formal rewriting can
also be used for bosons, but we have never heard of the filling of negative energy
states in this case.

The truly new content as well as the main motivation of the present paper

∗) This paper is the first part of the revised version of Ref. 2).
∗∗) Also, Okayama Institute for Quantum Physics, Okayama 700-0015, Japan.

∗∗∗) See, for example, Ref. 4) for a historical account.
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is to present an idea about how the second quantized field theory in the boson
case is analogous to the fermion system before the Dirac sea is filled. However,
this bosonic theory analogous to the empty Dirac sea for fermions has the serious
drawbacks. First, it has an indefinite “Hilbert space” as its Fock space. Furthermore,
the spectrum of its Hamiltonian is bottomless. On the other hand, it has much
nicer features than the true vacuum theory, in which the negative energy states are
completely filled, namely, the existence of position eigenstates and a description in
terms of finite-dimensional wave functions.

At the very end, when the true vacuum for the case of bosons is realized according
to the method presented in this paper, we obtain a theory which is exactly the same
as the usual one. This leads us to conclude that our approach is valid, but the true
vacuum theory itself may not provide new results.

However, “the naively quantized theory”, which is an analog of the unfilled Dirac
sea for fermions, is theoretically appealing, because it turns out to be a world in which
the state of a few particles can be described by wave functions of the positions of
these few particles. Remarkably, in contrast to usual relativistic theories, there exist
position eigenstates of the particles in the “naive vaccum world”. These consist of
superpositions of positive and negative energy eigenstates.

The problem of the passage from the naive vacuum world to the usual theory
involves, as mentioned above, the addition of “minus one boson” to each negative
energy state. In §2, we explicitly formulate the idea of a negative number of bosons
mathematically by treating the harmonic oscillator, which is brought into correspon-
dence with a single particle state through the usual second quantization. We extend
the spectrum with excitation numbers n = 0, 1, 2, · · · to that including all negative
integer values, n = −1,−2, · · ·. This extension can be performed by requiring that
the wave function ψ(x) be analytic in the entire complex x plane, except for an
essential singularity at x = ∞. This requirement replaces the usual condition on the
norm of the finite Hilbert space

∫∞
−∞ |ψ(x)|2dx < ∞. The conclusion of this study

is that the harmonic oscillator has the following two sectors: 1) the usual positive
sector consisting of those states with a non-negative number of particles, and 2) the
negative sector consisting of those states with a negative number of particles. The
latter sector has an indefinite Hilbert product.

We would like to stress that there is a barrier between the usual positive sector
and the negative sector. Due to the presence of this barrier, it is impossible to pass
from one sector to the other with usual polynomial interactions. This is due to the
existence of an effect that is in some sense an extrapolation of the well-known laser
effect. This effect makes it easy to fill an already highly filled single particle state
for bosons. This laser effect may vanish when an interaction causes a number of
particles to attempt to pass through the barrier. This may offer an explanation of
how the barrier prevents us from observing a negative number of bosons.

It may be possible to use as a toy model a formal world in which the usual
Dirac sea of fermions is not yet filled and the one boson removal from the negative
energy state has not yet been carried out. We study such a toy model, referred to
as the naive vacuum model. Specifically, we obtain a theorem analogous to the CPT
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theorem,∗) since the naive vacuum is CPT invariant for neither fermions nor bosons.
At first, it might be thought that a strong reflection without the associated inversion
of operator order might be sufficient. However, it turns out that this yields the
unwanted feature that the sign of the interaction energy is unchanged. The change
of the sign is necessary, because under strong reflection, the signs of all energies
should be switched. To overcome this problem, we propose a CPT-like symmetry for
the naive vacuum world to include a certain analytic continuation. This symmetry is
constructed by applying a certain analytic continuation around branch points which
appear in the wave function for each pair of particles. It is assumed that we can
restrict our attention to a family of wave functions with sufficiently good physical
properties. An argument for the validity of this assumption and a proof of a CPT-like
theorem are deferred to a subsequent paper.1)

We present a physical picture that may be of value in developing an intuition
for the naive vacuum world. In fact, investigation of the naive vacuum world may
be very interesting, because the physics there consists of quantum mechanics of a
finite number of particles. Furthermore, the theory is piecewise free in the sense
that relativistic interactions become of infinitely short range. Thus, the support
for non-zero interactions is the null set, and may be said that the theory is free
almost everywhere. However, the very local interactions are communicated only
via boundary conditions where two or more particles meet. This makes the naive
vacuum world a theoretical toy model. However, it suffers from the following severe
drawbacks from the physical point of view:

• The Hamiltonian has no lowest energy state.
• There are states for which the norm-square is negative.
• There are pairs of particles with tachyon-like centers of mass.
• It is natural to work with “anti-bound states” rather than bound states in the

negative energy regime.
What we really want to present in the present article is a more dramatic for-

mulation of the relativistic second quantization of boson theory, and this may be
thought of as a quantization procedure. Below we formulate the shift of the vacuum
for bosons as a shift of boundary conditions in the wave functional formulation of
the second quantized theory.

Now, it is interesting to consider whether using the understanding of the second
quantization of particles that we describe it could get a better understanding of
how to realize a second quantization strings. This was the original motivation of
the present work. In the first attempt to construct string field theory by Kaku and
Kikkawa, 6) an infinite momentum frame was used. To us, this appears to be an
attempt to avoid the problem of the negative energy states. But this is the root of
the trouble to be resolved through the modification of the vacuum described above.
Thus our hope would be that by better understanding these Dirac sea problems in
our way, it might be possible to formulate new types of string field theories, in which
the infinite momentum frame is not necessary.

The present paper is organized as follows. Before presenting a description of how

∗) The CPT theorem is explained well in Ref. 5).
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to quantize bosons in our formulation, we formally consider the harmonic oscillator
in §2. This is naturally extended to describe a single particle state that can also
have a negative number of particles. In §3, application to even spin particles is de-
scribed. There, the negative norm-square problems are resolved. In §4, we construct
a wave functional formulation of our method. There we explain the change of the
convergence and the finite norm conditions. In §5 we illustrate the main point of
the formulation of the wave functional by considering a double harmonic oscillator.
This is much like a 0 + 1 dimensional world, instead of the usual 3 + 1 dimensional
world. In §6, we study the naive vacuum world. Finally, in §7, we give conclusions.

§2. Analytic harmonic oscillator

In this section we consider as an exercise the formal problem of a harmonic
oscillator with the requirement of the analyticity of the wave function. This exercise
is crucial for formulating a method to treat bosons with a Dirac sea analogous to
that for fermions. In this exercise, the usual requirement that the wave function
ψ(x) be square integrable, ∫ ∞

−∞
|ψ(x)|2dx <∞, (2.1)

is replaced by the requirement that ψ(x) be analytic in C, with an essential singu-
larity at x = ∞ allowed. In fact, for this harmonic oscillator we prove the following
theorem:

Theorem
1) The eigenvalue spectrum E for the equation(

− h̄2

2m
∂2

∂x2
+

1
2
mω2x2

)
ψ(x) = Eψ(x) (2.2)

is given by

E =
(
n+

1
2

)
h̄ω (nεZ), (2.3)

for any integer n.
2) The wave functions for n = 0, 1, 2, · · · are the usual ones,

ϕn(x) = Ane
− 1

2
(βx)2Hn(βx). (2.4)

Here, β2 = mω
h̄ , An =

√
β

π
1
2 2nn!

, and the functions Hn(βx) are the Hermite polyno-

mials in βx . For n = −1,−2, · · · the eigenfunction is given by

ϕn(x) = ϕ−n−1(ix) = A−n−1e
1
2
(βx)2H−n−1(iβx). (2.5)

3) The inner product is defined as the natural one, given by

〈ψ1|ψ2〉 =
∫

Γ
ψ1(x∗)∗ψ2(x)dx, (2.6)
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where the contour denoted by Γ is taken to be that along the real axis from x = −∞
to x = ∞. This contour should be chosen so that the integrand approaches 0 as
x → ∞, but there remains some ambiguity in this choice of Γ . However, if one
chooses the same Γ for all negative n states, the signs of the norm-squares of these
states are alternating. In fact, for the path Γ along the imaginary axis from −i∞
to i∞, we obtain

〈ϕn|ϕm〉 =
∫ i∞

−i∞
ϕn(x∗)∗ϕn(x)dx

= −(−1)n. (2.7)

The proof of this theorem is rather trivial. We may start with consideration of
the behavior of a solution to the eigenvalue equation for large x. We assume a wave
function of the form

ψ(x) = f(x)e±
1
2
(βx)2 , (2.8)

and we rewrite the eigenvalue equation (2·3) as

f ′′(x)
β2f(x)

± 2f ′(x)
βf(x)

βx = −E ∓ 1
2ωh̄

ωh̄
. (2.9)

If we use the approximation that the term f ′′(x)/β2f(x) is dominated by the term
±2f ′(x)

βf(x) βx for large |x|, Eq. (2.9) reads

d log f(x)
d log x

=
∓E + 1

2ωh̄

ωh̄
. (2.10)

Here, the right-hand side is a constant n, which is yet to be shown to be an integer,
and we obtain as the large x behavior

f(x) ∼ xn. (2.11)

The reason that n must be an integer is that otherwise the function xn will have a
cut. Thus, requiring that f(x) be analytic except at x = 0, we must have

∓E = −1
2
ωh̄+ nh̄ω. (2.12)

For the upper sign, the replacement n→ −n− 1 is made, and we can always write

E =
1
2
h̄ω + nh̄ω, (2.13)

where n can take not only the non-negative values n = 0, 1, 2, · · ·, but also the
negative values n = −1,−2 · · · .

Indeed, it is easily found that for a negative n, the wave function is

ϕn(x) = ϕ−n−1(ix) = A−n−1e
1
2
(βx)2H−n−1(iβx). (2.14)
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Next, we consider the inner product defined by Eq. (2.6). If the integrand
ψ1(x∗)∗ψ2(x) goes to zero as x→ ±∞, the contour Γ can be deformed as usual. But
when the integrand does not go to zero, we may have to define the inner product by
analytic continuation of the wave functions from the usual positive sector ones that
satisfy

∫ |ψ(x)|2dx < ∞. If we choose Γ to be the path along the imaginary axis
from x = −i∞ to x = i∞, the inner product takes the form

〈ϕn|ϕm〉 =
∫ i∞

−i∞
ϕn(x∗)∗ϕm(x)dx

= i

∫ ∞

−∞
ϕ−n−1 (i (iξ)∗)∗ ϕ−m−1 (i (iξ)) dξ, (2.15)

where x along the imaginary axis is parameterized by x = iξ, with real ξ. From
Eq. (2.15), we obtain for negative n and m,

〈ϕn|ϕm〉 = −i(−1)mδnm, (2.16)

and we thus have

‖ ϕn ‖2= −i(−1)n. (2.17)

We note that the norm-square has an alternating sign as a function of n when the
contour Γ is kept fixed.

The reason why there is a factor of i in Eq. (2.17) can be understood as follows.
When taking the complex conjugation in the definition of the inner product (2.6),
the complex conjugate of the contour Γ must be used:

〈ψ1|ψ2〉∗ =
∫

Γ ∗
ψ1(x∗)ψ2(x)∗dx. (2.18)

Thus, if Γ is described by x = x(ξ) as

Γ = {x(ξ)| −∞ < ξ <∞ : ξ ∈ R}, (2.19)

then Γ ∗ is given by

Γ ∗ = {x∗(ξ)| −∞ < ξ <∞ , ξ ∈ R} . (2.20)

Thus, we find

〈ψ1|ψ2〉∗ =
∫
−∞<ξ<∞

ψ2(x(ξ)∗)∗ψ1(x(ξ))
dx(ξ)∗

dx(ξ)
dx(ξ), (2.21)

which differs from 〈ψ2|ψ1〉 by the factor dx(ξ)∗/dx(ξ) in the integrand. In the case
x(ξ) = iξ ,we have dx(ξ)∗/dx(ξ) = −1, and therefore

〈ψ1|ψ2〉∗ = −〈ψ2|ψ1〉 (2.22)

for the eigenfunctions of the negative sector. From this relation, we set that the
norm-square is purely imaginary.
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The above-described convention for the inner product is somewhat unnatural,
and for this reason, it may be preferable to change the inner product Eq. (2.6) to a
new one defined by

〈ψ1|ψ2〉new =
1
i
〈ψ1|ψ2〉, (2.23)

so as to have the usual relation also in the negative sector,

〈ψ1|ψ2〉∗new = 〈ψ2|ψ1〉new. (2.24)

§3. Treatment of the Dirac sea for bosons

In this section we make use of the extended harmonic oscillator described in
previous section to quantize bosons.

As is well known in the context of non-relativistic theory, a second quantized
system of bosons can be described by using an analogy to a system of harmonic
oscillators, one for each state in an orthonormal basis for a single particle. The
excitation number n of the harmonic oscillator is identified with the number of bosons
present in that state in the basis to which the oscillator corresponds. For instance,
if we have a system with N bosons, its state is represented by the symmetrized wave
function

ψα1...αN (
⇀
x1, · · · , ⇀

xN ), (3.1)

where the indices α1, α2 · · · , αN represent the intrinsic quantum numbers such as
spin. In an energy and momentum eigenstate, k = (

⇀
k ,+) or k = (

⇀
k ,−), where the

signs + and − denote those of the energy, we may write

Kpos = {(⇀
k ,+)| ⇀

k} , (3.2)

Kneg = {(⇀
k ,−)| ⇀

k} . (3.3)

Note that we have K = Kpos ∪Kneg. We then expand ψα1...αN (
⇀
x1, · · · , ⇀

xN ) in terms
of an orthonormal basis of single particle states, {ϕk;α (

⇀
x)}, with k ∈ K. This

expansion reads

|ψ〉 = ψα1...,αN (
⇀
x1, · · · , ⇀

xN )

=
∑

Ck1,...,kN

1
N !

∑
ρεSN

ϕkρ(1)α1(
⇀
x1)ϕkρ(2)α2(

⇀
x2) · · ·ϕkρ(N)αN

(
⇀
xN ). (3.4)

The corresponding state of the system of harmonic oscillators is given by

|ψ〉 =
∑

k1,...,kN

Ck1,...kN

∏
kεK

|nk〉, (3.5)
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where |nk〉 represents the state of the k-th harmonic oscillator.
Next, the harmonic oscillator is extended so as to allow the possibility of neg-

ative values of the excitation number, nk. Such values correspond to the case in
which the number of bosons nK in the single particle states is negative. In the non-
relativistic case, one can introduce the creation and annihilation operators ak and
a+

k , respectively. In the harmonic oscillator formalism, these are the step operators
for the kth harmonic oscillator,

a+
k |nk〉 =

√
nk + 1 |nk + 1〉 , (3.6)

ak|nk〉 =
√
nk |nk − 1〉. (3.7)

It is also possible to introduce creation and annihilation operators for arbitrary states
|ψ〉 as

a+(ψ) =
∑
kεK

〈ϕk|ψ〉a+
k , (3.8)

a(ψ) =
∑
kεK

ak〈ϕk|ψ〉, (3.9)

where the inner product is defined by
∫
d3xϕ∗(x)i

↔
∂ 0 ψ(x). We then find

[a(ψ′), a+(ψ)] =
∑
k,k′

〈ψ′|ϕk′〉[ak′ , ak]〈ϕk|ψ〉

= 〈ψ′|ψ〉, (3.10)

in which the right-hand side contains an indefinite Hilbert product. Thus, if we per-
form this naive second quantization, the possible negative norm-square is inherited
by the quantized states in the Fock space.

Suppose that we choose the basis such that for some subsetKpos the norm square
is unity, i.e.,

〈ϕk|ϕk〉 = 1 for k ∈ Kpos, (3.11)

while for the complement set Kneg = K\Kpos it is −1, i.e.,

〈ϕk|ϕk〉 = −1 for k ∈ Kneg. (3.12)

Thus, any component of a Fock space state must have a negative norm-square if it
has an odd number of particles in states of Kneg.

We thus have the following signs of the norm-square in the naive second quan-
tization:

〈nk|mk〉 = δnkmk
(−1)nk , (3.13)
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for k ∈ Kneg, where nk and mk denote the usual nonzero levels. Using our extended
harmonic oscillators, we end up with a system whose values of the norm-squared are
as follows:
for k ∈ Kpos,

〈n1, n2 . . . |m1, m2, . . .〉

=




δnkmk
for nk,mk = 0, 1, 2, · · · ,

iδnkmk
(−1)nk for nk,mk = −1,−2 · · · ,

∞ for nk and mk in different sectors,

(3.14)

and for k ∈ Kneg,

〈n1, n2 . . . |m1, m2, . . .〉

=




δnkmk
(−1)nk for nk,mk = 0, 1, 2, · · · ,

iδnkmk
for nk,mk = −1,−2 · · · ,

∞ for nk and mk in different sectors.

(3.15)

We should bear in mind here that the trouble involving the negative norm-square
can be solved by putting minus one particle into each state with k ∈ Kneg. When
this is done, these states are restricted to negative numbers of particles. Thus, we
have to use the inner product 〈nk|mk〉 = iδnkmk

, which makes the Fock space sector
a good positive definite Hilbert space, apart from the overall factor of i.

We formulate our procedure in the following. The naive vacuum can be con-
structed from harmonic oscillators states as

| naive vac〉 =
∏
kεK

|0〉kth
osc
, (3.16)

where |0〉kth
osc

denotes the vacuum state of the kth harmonic oscillator. However, the
correct vacuum is given by

| correct vac〉 =
∏

kεKpos

|0〉kth
osc

·
∏

kεKneg

| − 1〉kth
osc
, (3.17)

where the states | − 1〉 in Kneg are those with minus one particles.
We proceed to the case of relativistic integer spin particles, whose inner product

is indefinite by Lorentz invariance,∫
ψ∗(

⇀
x, t)

↔
∂t ψ(

⇀
x, t)d3 ⇀

x . (3.18)

For the simplest scalar field case, the energy of the naive vacuum is given by

Enaive vac =
∑
kεK

1
2
ωk = 0. (3.19)

By adding minus one particle to each negative energy state, ϕk−, with k ∈ Kneg, the
second quantized system is brought into such a sector that it is in the ground state.
This state is the correct vacuum. Its energy is given by
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Ecorrect vac =
∑
kεK

1
2
ωk −

∑
kεKneg

1
2
ωk (3.20)

=
∑
kεK

1
2
|ωk| =

∑
kεKpos

ωk. (3.21)

It should be stressed that we obtain the ground state in this way only inside the
sector. In fact, with the single particle negative energies for bosons, the total Hamil-
tonian may have no lowest energy state. For this reason, if we do not add minus
one particle to each single particle negative energy state, there may exist a series of
states whose energies go to −∞. However, by adding minus one particle, we obtain
a state of the second quantized system in which there exists a barrier, due to the
laser effect. This barrier prevents the system from falling back to lower energies, as
long as the interaction is restricted to polynomials in a+

k and ak.
In the above calculation, for the relativistic case, we have

Ecorrect vac > Enaive vac. (3.22)

Thus, at first sight, the correct vacuum appears to be unstable. However, the ques-
tion of which vacuum has a lower energy is not important with regard to the stability
of a certain vacuum. Rather, the important thing is the range of allowed energies for
the sector of the vacuum under consideration. For this reason, we define the energy
range Erange of the vacuum by

Erange(|vac〉) = {E}, (3.23)

where E denotes the energy in a state that can be reached from |vac〉 by some
operators that are polynomials in a+ and a. Thus, for the naive vacuum we have

Erange(|naive vac〉) = (−∞,∞), (3.24)

while for the correct vacuum we have

Erange(|correct vac〉) =
[∑

kεK

1
2
|ωK |,∞

]
. (3.25)

Once the vacuum is brought into the correct vacuum state, it is no longer possible
to add particles to the state with Kneg, due to the presence of the barrier. However,
it is possible to subtract particles. Thus ak with k ∈ Kneg can act on | − 1〉kth

osc
an

arbitrary number of times as

(ak)n| − 1〉kth
osc

=
√
|n|! | − 1 − n〉kth

osc
. (3.26)

We can regard these subtractions as holes which correspond to the addition of an-
tiparticles.

It is natural to switch notation from that with a dagger to that without by
defining
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b+(− ⇀
k , anti) = a(

⇀
k ,−), (3.27)

and vice versa where k = (
⇀
k ,−) is a ω < 0 state with the 3-momentum

⇀
k . The

operator b+(− ⇀
k , anti) causes the creation of an antiparticle with momentum

⇀
k and

positive energy −ω > 0. This is exactly the usual method of treatment for the second
quantization of bosons. The commutator of these operators is given by

[b(
⇀
k , anti), b+(

⇀

k′, anti)] = δ⇀

k
⇀

k′ . (3.28)

It should be noted that in the boson case, the antiparticles are also holes. Before
closing this section, we discuss two important issues. The first is that there are
potentially four possible vacua in our approach to the quantization.

We have argued that we can obtain the correct vacuum by modifying the naive
vacuum so that one fermion is added and one boson removed from each single particle
negative energy state. This presents the possibility of considering a naive vacuum
and the associated world of states in which there exist a few extra particles. The
naive vacuum should be considered a toy model for the study of the correct vacuum.
It should be mentioned that once we start with one of the vacua and proceed by
adding particles to the negative energy states or removing particles from them, we
may do the same for positive energy states. In this way, we can think of four different
vacua, which are illustrated symbolically as types (a)–(d) in Fig. 1.

As an example, let us consider the type (c) vacuum. In this vacuum, the positive
energy states are modified by adding one fermion to the positive energy states and
removing one boson from them, while the negative energy states are not modified.
Therefore,the single particle energy spectrum has a top but no bottom. Experimen-
tally, it would not be possible to distinguish this and the reversed convention for the
energy as long as a free system is concerned. However, with the reversed convention,
we would have negative norm-squares for all bosons, and the interactions would act
in the opposite manner. We show in subsequent sections that there is a trick of
the analytic continuation of the wave function that can be used to circumvent this
inversion of the interaction.

The second issue regards the CPT operation on the four vacua. The CPT
operation on the naive vacuum denoted type (a) in Fig. 1 does not transform into
the same vacuum. The reason is that under the charge conjugation operator C,
all the holes in the negative energy states are, from the correct vacuum point of
view, replaced by the particles of the corresponding positive energy states. Thus,
acting with the CPT operator on the naive vacuum, it is transformed into the type
(c) vacuum, because the positive energy states are modified, while the negative
ones remain the same. This implies that in the naive vacuum, CPT symmetry is
spontaneously broken. However, in the subsequent paper “Dirac sea for bosons.
II”,1) we present another CPT-like theorem concerning a situation in which the
CPT-like symmetry is preserved in the naive vacuum but broken in the correct one.

Before closing this section, we mention some properties of the world around the
naive vacuum, where there are only a few particles. The term “the world around
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(c) False vacuum                                                              (d) False vacuum

(a) Naive vacuum                                                               (b) True vacuum

Fig. 1. Four types of vacua. There are four possible types of vacua for bosons as well as fermions.

Here, the vertical axis indicates the energy level. In (a) – (d), the shaded regions represent

states that are all filled by one particle for fermions and minus one particle for bosons. The

unshaded regions represent empty states.

a vacuum” is used for a Hilbert space with a superposition of such states that it
deviates from the vacuum in question by a finite number of particles and that bosons
do not cross the barrier. Because the naive vacuum contains no particles, we can add
a positive number of particles, each of which can have either a positive or negative
energy. The correct vacuum may similarly have a finite number of particles and
holes, in addition to the negative energy seas.

§4. Wave functional formulation

In this section we develop the wave functional formulation of field theory in the
naive vacuum world.

In the field theoretical formulation with the naive field quantization
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ϕ(
⇀
x, t) =

∑
⇀
p ,sign

1√|ω|a(
⇀
p , sign)e−iωt+i

⇀
p ·⇀x , (4.1)

π(
⇀
x, t) =

∑
⇀
p ,sign

1√|ω|a(
⇀
p , sign) · (sign) = e−iωt+i

⇀
p ·⇀x , (4.2)

we have the wave functional Ψ [ϕ]. For each eigenmode ωϕ⇀
p

+ iπ⇀
p

, where ϕ⇀
p

is the
3-spatial Fourier transform of ϕ(x), and π⇀

p
is its conjugate momentum, we have an

extended harmonic oscillator described in §2. In order to see how to put the naive
vacuum world into a wave functional formulation, we investigate the Hamiltonian
and the boundary conditions for single particle states with a general norm-square.

Let us imagine that we employ the convention in which the n-particle state is

AnHn(x), (4.3)

with Hn a Hermite polynomial. Thus we have

|n〉 = AnHn(x)|0〉. (4.4)

On the other hand, the nth excited state for the harmonic oscillator is given by

AnHn(x)βe−
1
2
(βx)2 , (4.5)

with β2 = h̄
mω . We can vary the normalization while maintaining the convention

〈n|n〉 = β−2n〈0|0〉. (4.6)

We may consider β−2 as the norm square of the single particle state corresponding
to the harmonic oscillator.

Now the Hamiltonian of the harmonic oscillator can be expressed in terms of ω
and β−2 as

H = − ω

2〈s.p.|s.p.〉
d2

dx2
+

1
2
〈s.p.|s.p.〉ωx2, (4.7)

where |s.p.〉 denotes the single particle state, and thus

〈s.p.|s.p.〉 = mω = β−2, (4.8)

with h̄ = 1. Therefore, we obtain the Hamiltonian

H = −1
2
β2ω

d2

dx2
+

1
2
β−2ωx2. (4.9)

Now, we remark that to make 〈s.p.|s.p.〉 negative for negative ω, β must be
purely imaginary. Thus, e−

1
2
(βχ)2 blows up so that the wave functions become like

those in the extended negative sector discussed in the previous sections.
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In passing to the correct vacuum world by removing one particle from each
negative energy state, the boundary conditions for the wave functional are changed
so as to converge along the real axis for all the modes. It should be kept in mind here
that the boundary conditions are along the imaginary axis for the negative energy
modes in the naive vacuum.

From the fact that the form of the Hamiltonian in the wave functional formalism
must be the same as that for the correct vacuum, we can easily write down the
Hamiltonian. For instance, using the conjugate variable π,

π(
⇀
x) = −i δ

δϕ(
⇀
x)
, (4.10)

the free Hamiltonian becomes

Hfree =
∫ 1

2

{
|π(

⇀
x)|2 + | � ϕ(

⇀
x)|2 +m|ϕ(

⇀
x)|2

}
d3 ⇀

x . (4.11)

This acts on the wave functional as

HfreeΨ [ϕ] =
1
2

∫ {
− δ2

δϕ(
⇀
x)2

+ | � ϕ(
⇀
x)|2 +m2|ϕ(

⇀
x)|2

}
Ψ [ϕ].

The inner product for the functional integral is given by

〈Ψ1|Ψ2〉 =
∫
Ψ1[(Reϕ)∗, (Imϕ)∗]∗

·Ψ2[Reϕ, Imϕ]DReϕ · DImϕ,

where the independent functions are Reϕ(
⇀
x) and Imϕ(

⇀
x). In order to describe the

wave functional theory of the naive vacuum world, we construct a formulation in
terms of the convergence condition along the real function space for Reϕ and Imϕ.
In fact, we use a representation in which Ψ [Reϕ, Imπ] is expressed in terms of ϕ and
π.

We would like our formulation to be such that the boundary conditions for
the quantity ωϕ⇀

k
+ iπ⇀

k
are convergent on the real axis for ω > 0 and convergent

on the imaginary axis for ω < 0. We can consider the real and imaginary parts of
(ωϕ⇀

k
+iπ⇀

k
) separately. Then, the requirement of convergence in the correct vacuum

should be that for ω < 0 the formal expressions

Re(ωϕ⇀

k
+ iπ⇀

k
) =

ω

2

{
(Reϕ)⇀

k
+ (Reϕ)−⇀

k

}
− 1

2

{
(Imπ)⇀

k
+ (Imπ)−⇀

k

}
(4.12)

and

Im(ωϕ⇀

k
+ iπ⇀

k
) =

ω

2

{
(Imϕ)⇀

k
+ (Imϕ)−⇀

k

}
+

1
2

{
(Reπ)⇀

k
+ (Reπ)−⇀

k

}
(4.13)
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are purely imaginary along the integration path for which the convergence is required.
We can use the following parameterization in terms of the two real functions χ1

and χ2:

Reϕ = −(1 + i)χ1 − (1 − i)χ2,

Imπ = (1 − i)χ1 + (1 + i)χ2.

With this parameterization, the phases of ωϕ⇀

k
+ iπ⇀

k
lie in the intervals

] − π

4
,
π

4
[ for ω > 0

and

]
π

4
,

3π
4

[ for ω < 0,

modulo π. They provide the boundary conditions for the naive vacuum world when
convergence of the Dχ1Dχ2 integration is required.

In this way, we find the naive vacuum world with the usual wave functional
Hamiltonian operator. However, we do not require the usual convergence condition∫

Ψ(Reϕ, Imϕ)∗Ψ(Reϕ, Imϕ)DReϕDImϕ <∞, (4.14)

but, instead,

〈Ψ |Ψ〉 =
∫
Ψ [(Reϕ)∗, (Imπ)∗]∗Ψ [Reϕ, Imϕ]Dχ1Dχ2 <∞, (4.15)

where the left-hand side is defined along the path with χ-parameterization. The
inner product corresponding to this functional contour is

〈Ψ1|Ψ2〉=
∫
Ψ1[−(1 − i)χ1 − (1 + i)χ2, (1 + i)χ1 + (1 − i)χ2]∗

Ψ2[−(1 + i)χ1 − (1 − i)χ2, (1 − i)χ1 + (1 + i)χ2]Dχ1Dχ2. (4.16)

This quantity is not positive definite, and this is related to the fact that there are
many negative norm-square states in the Fock space in the naive vacuum world.

The method of filling the Dirac sea vacuum for fermions is now extended to the
case of bosons that in the naive vacuum we have the strange convergence condition
Eq. (4.14). We then transform to the correct vacuum by switching the boundary
conditions to those with convergence along the real axis, e.g., with Reϕ and Imπ
real.

§5. Double harmonic oscillator

To illustrate how our functional formalism works, we consider as a simple ex-
ample a double harmonic oscillator. This example is relevant for the following three
reasons:
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1) It is a subsystem of a field theory that consists of two single particle states with
pµ = (

⇀
p , ω(

⇀
p )) and −pµ = (− ⇀

p ,−ω(
⇀
p )) for ω(

⇀
p ) > 0 .

2) It could correspond to a single 3-position field, where the gradient interaction
is ignored.

3) It is a 0 + 1- dimensional field theory model.
We start by describing the spectrum for the free case corresponding to a two-

state system in which the two states have opposite values of ω’s. The boundary
conditions in the naive vacuum world are given by

∫
ψ ((Reϕ)∗ , (ImΠ)∗)∗ ψ (Reϕ, ImΠ) dχ1χ2

=
∫
ψ (− (1 − i)χ1 − (1 + i)χ2, (1 + i)χ1 + (1 − i)χ2)

∗

· ψ (− (1 + i)χ1 − (1 − i)χ2, (1 − i)χ1 + (1 + i)χ2) dχ1dχ2 <∞, (5.1)

which is similar to Eq. (4.16). However, in Eq. (5.1), the quantities χ1 and χ2 are
not functions, but merely real variables. Here, we use a mixed representation in
terms of the position variables Reϕ and Imϕ and the conjugate momenta

Reπ = −i ∂

∂Reϕ
, Imπ = −i ∂

∂Imϕ
. (5.2)

The Hamiltonian is that of a rotationally symmetric two dimensional oscillator,
because the two values of ω’s are opposite. Then, from Eq. (4.7), the coefficient of

∂2

∂Imϕ2 is

−ω
2 <= 〈s.p.|s.p.〉 , (5.3)

and that of (Imϕ)2 is

1
2
〈s.p.|s.p.〉ω, (5.4)

where |s.p.〉 denotes the single particle state. These coefficients are the same for both
oscillators, and thus the Hamiltonian reads

H = −1
2
|ω| ∂

∂ϕ

∂

∂ϕ∗ +
1
2
|ω|ϕ∗ϕ

=
1
2
|ω|
(
− ∂2

∂Reϕ2
− ∂2

∂Imϕ2
+ Reϕ2 + Imϕ2

)
.

This is expressed in the mixed representation as

H =
1
2
|ω|
(
− ∂2

∂Reϕ2
+ Reϕ2 + Imπ2 − ∂2

∂Imπ2

)
. (5.5)
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We can express H in terms of the real parameterization with χ1 and χ2 by using the
relations

Reϕ = −(1 + i)χ1 − (1 − i)χ2 ,

Imπ = (1 − i)χ1 + (1 + i)χ2.

It is convenient to define

χ± =
√

2(χ2 ± χ1), (5.6)

so that the Hamiltonian can be simply expressed as

H =
1
2
|ω|
(
∂2

∂χ2−
− χ2

− − ∂2

∂χ2
+

+ χ2
+

)
. (5.7)

The inner product takes the form

〈ψ̃1|ψ̃2〉 =
∫
ψ̃1(−χ−, χ+)∗ψ̃2(χ−, χ+)dχ−dχ+, (5.8)

where

ψ̃i(χ−, χ−) = ψi(−
√

2χ+ + i
√

2χ−,
√

2χ+ + i
√

2χ−). (5.9)

As expected, the Hamiltonian turns out to be that of two uncoupled harmonic
oscillators expressed in terms of χ−and χ+. The χ+ oscillator is the usual one, while
χ− differs from the usual one in two ways. First, it has an overall negative sign.
Second, in the definition of the inner product, −χ− is used instead of χ− in the bra
wave function. This difference is equivalent to removing the parity transformation
χ− → −χ− from the inner product.

The energy spectrum is made up of all combinations of positive contributions
|ω|(n+ + 1

2) and negative contributions −|ω|(n− + 1
2). Therefore we have

E = |ω|(n+ − n−). (5.10)

The norm-squares of these combinations of eigenstates are (−1)n−−1, which is equal
to the parity under the χ− parity transformation χ− → −χ− .

If we consider a single particle state, the charge (i.e., the number of particles) is
given by

Q =
i

4
{
π+, ϕ

}− i

4
{
ϕ+, π

}
=

1
2
χ2

+ − 1
2
∂2

∂χ2
+

+
1
2
χ2
− − 1

2
∂2

∂χ2−
− 1. (5.11)

This is simply the sum of two harmonic oscillator Hamiltonians with the same unit
frequency. Thus, the eigenvalue Q′ of Q can take only non-negative integer values.
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(a) Naive vacuum (b) True vacuum

Fig. 2. Charge vs energy in a two-state system. The energy E versus the charge Q (i.e., the number

of particles) in the two-state system described in the main text. This two state system actually

represents a massive boson theory in 1 time+0 space dimensions. Here, a dot alone indicates

that there is one Fock space state, while a dot within a circle indicates that there are two Fock

space states with quantum numbers E and Q, and a dot with “3” indicates that there are three

states. The triangles of dots are to be understood as extending to infinity. The naive vacuum

is depicted in (a), while the true vacuum is depicted in (b).

For a given value Q′, which is the number of particles in either of the two states, the
energy can vary from E = −|ω|Q′ to E = |ω|Q′ in steps of 2|ω|. Thus, we have

n− = Q′, Q′ − 1, Q′ − 2, · · · , 0 (5.12)

for the negative ω states, while for the positive energy states, we have

n+ = Q− n− . (5.13)

Therefore the energy given in Eq. (5.10) can be written as

E = |ω|(Q− 2n−), (5.14)

which is illustrated in Fig. 2(a). By charging to the convergence condition along the
real axis, we obtain the usual theory with correct vacuum [see Fig. 2(b)].

The wave function of the naive vacuum is given by

ψnυ = N exp
(
−1

2
χ2
− − 1

2
χ2

+

)
, (5.15)

with normalization constant N . We can transform Eq. (5.14) in the mixed transfor-
mation back to the position representation by applying the Fourier transformation

ψnυ(Reϕ, Imϕ) =
∫
eiImΠ·Imϕψnυ(Reϕ, ImΠ)dImΠ
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= N

∫
eiImΠ·ImϕeImΠ·ReϕdImΠ

= Nδ(Imϕ− iReϕ). (5.16)

Here, the δ-function is regarded as a functional linear in test functions that are
analytic and decays faster than any power in real directions and no faster than a
certain exponential in imaginary directions. We call this function the distribution
class Z ′, following Gel’fand and Shilov.7) Thus our naive vacuum wave function is a
δ-function that belongs to Z ′.

By applying operators consisting of polynomials in creation and annihilation
operators to the naive vacuum state we obtain an expression of the form

∑
n,m=0,1,...

an,m(Reϕ− iImϕ)nδ(m)(Reϕ+ Imϕ). (5.17)

Thus, the wave functions of the double harmonic oscillator in the naive vacuum world
take the form of of Eq. (5.17).

As long as the charge Q is conserved, even with an interaction term such as an
anharmonic double oscillator with phase rotation symmetry, only states of the form
given in Eq. (5.17) can mix. For such a finite quantum number Q, there is only a
finite number of these states of this form. Therefore, even solving the anharmonic
oscillator problem is reduced to a finite matrix diagonalization. In this sense, the
naive vacuum world is easier to treat than the correct vacuum world.

We can extend our result for the double harmonic oscillator for the naive vacuum
to higher dimensions. The naive vacuum world would then involve polynomials in
combinations that are not present in the δ-functionals and their derivatives.

§6. Naive vacuum world

In this section, we list properties of the naive vacuum world. It is obvious that
this world has the following five inappropriate properties from the phenomenological
point of view:

1) There is no lowest energy state.
2) The “Hilbert space” is not a true Hilbert space, because it is not positive

definite. The states with an odd number of negative energy bosons acquire an
extra minus sign in the norm-square.
We can introduce boundary conditions to make the model complete. These
may be different for negative energy states. As shown in the subsequent paper
“Dirac Sea for Bosons. II”,1) in order to realize an elegant CPT-like symmetry,
we propose to employ boundary conditions for the negative energy states such
that bound state wave functions diverge.

3) We cannot incorporate particles that are their own antiparticles. Therefore, we
should consider all particles to possess some charges.

4) The naive vacuum world can be viewed as a quantum mechanical system rather
than a second quantized field theory. This is because we can think of a finite
number of particles, and the second quantized naive vacuum world consists of
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Table I. Spin-statistics theorem for the naive vacuum.
����������statistics

spin
S = 1

2
, 3

2
, · · · S = 0, 1, · · ·

Fermi-Dirac ‖ · · · ‖2 ≥ 0 Indefinite

Bose-Einstein ‖ · · · ‖2 ≥ 0 Indefinite

Table II. Spin-statistics theorem for the true vacuum.
����������statistics

spin
S = 1

2
, 3

2
, · · · S = 0, 1, · · ·

Fermi-Dirac ‖ · · · ‖2 ≥ 0 Indefinite

Bose-Einstein Indefinite ‖ · · · ‖2 ≥ 0

a superposition of states with various finite numbers of particles.
5) If we accept the negative norm-square, there is no reason to quantize integer

spin particles as bosons and half integer spin particles as fermions. Indeed, we
find the various possibilities listed in Table I. In this table, we recognize that
the well-known spin-statistics theorem is valid only if we require the Hilbert
space to be positive definite. It should be noted that in the naive vacuum
world with integer spin states, negative norm-squares exist anyway, and thus
the spin-statistics theorem does not hold. When we employ the correct vacuum,
it becomes possible to avoid a negative norm-square. Then, the problem of an
indefinite Hilbert space can be avoided by choosing Bose or Fermi statistics,
according to the spin-statistics theorem. This is depicted in Table II.

§7. Conclusions

We have presented an attempt to extend the idea of the Dirac sea for fermions
to the case of bosons. We first considered one second quantization, called the naive
vacuum world, in which there exist a few positive and negative energy fermions and
bosons but yet no Dirac sea for fermions or bosons. This first picture of the naive
vacuum world model has the serious problems with regard to physical properties
because it has a bottomless energy spectrum. For bosons, this naive vacuum has
even more serious problems because, in addition to negative energies without a lower
bound, a state with an odd number of negative energy bosons has a negative norm-
square. Hence, there is no actual Hilbert space, but only an indefinite one. At this
first step in the boson formulation the inner product for the Fock space is not positive
definite. Thus, this first step is completely ruled out from the phenomenological point
of view for bosons as well as for fermions. For bosons, this is true for two major
reasons: unbounded negative energy and negative norm-square.

However, from the point of view of a theoretical study, this naive vacuum world
is very attractive, because the treatment for a few particles is quantum mechanical
rather than quantum field theoretical. Furthermore, by locality, the system of several
particles becomes free in the neighborhood of almost all configurations, except in the
case that some particles meet and interact. We propose the use of this theoretically
attractive first step as a theoretical “playground” to gain physical understanding of



Dirac Sea for Bosons. I 623

the real world, which is the second step.
In the present article, we studied the naive vacuum world as a first step. We

would like to stress the following major results:
1) In the naive vacuum, single particles can exist in position eigenstates, in contrast

to the case of particles in “true” relativistic theories.
2) The Fock space for bosons is indefinite.
3) The Hamiltonian has no lowest energy state. We made some detailed calcula-

tions concerning this point.
4) We determined the main feature of the wave functionals for bosons, namely, they

are derivatives of δ-functionals of the complex field multiplied by polynomials
in the complex conjugate of the field. These singular wave functionals form a
closed class when acted on by operators consisting of polynomials in the creation
and annihilation operators. In particular, we worked through the case of one
pair consisting of single particle states with opposite momenta.

5) In the subsequent paper “Dirac Sea for Bosons. II”, we present a CPT-like
symmetry. A reduced form of strong reflection provides an extra transformation
that is an analytic continuation of the wave function onto another sheet among
the 2

1
2
N(N+1) sheets for the wave function of the N particle system. This sheet

structure exists because rik is a square root, and therefore it has 2 sheets. For
each of the 1

2N(N + 1) pairs of particles, there is a dichotomic choice of the
sheet, and hence there are 2

1
2
N(N+1) sheets.

The main point of our present work is to formulate the transition from the naive
vacuum of the first step to the correct vacuum of the next step. For fermions, it is
known that this can be accomplished by filling the negative energy states. This is
what is termed filling the Dirac sea. The corresponding procedure for the case of
bosons is that in which from each negative energy single particle state, one boson is
removed (that is, minus one boson is added). This removal cannot be carried out in
a manner that is as physically realistic as the adding of a fermion, because there is
a barrier to be crossed.

We studied this problem using a harmonic oscillator corresponding to a single
particle boson state. We replaced the usual Hilbert norm requirement of finiteness
by the requirement of the analyticity of the wave function in the entire complex
x-plane, except at x = ±∞. The spectrum of this extended harmonic oscillator or
the harmonic oscillator with an analytic wave function has an additional series of
levels with negative energies, in addition to the usual one. The wave functions with
negative energies are of the form of Hermite polynomials multiplied by e

1
2
(βx)2 .

We note that there is a barrier between the usual states and those with negative
excitation numbers, because annihilation and creation operators cannot cause the
crossing of the gap between these two sectors. The removal of one particle from an
empty negative energy state represents crossing the barrier. Although this cannot
be accomplished with a finite number of interactions expressed as a polynomial in
creation and annihilation operators, we can still consider such a process. Precisely
because of the barrier it is allowed to imagine the possibilities that negative particle
numbers could exist without contradicting with experiment.
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Once the barrier has been crossed to the negative single particle states from the
positive ones in a formal way, the model is locked in and those particles cannot return
to the positive states. Therefore, it is not a serious problem that the correct vacuum
for bosons realizes a higher energy than the states with a non-negative number of
particles in the negative energy states.

Finally, we mention our underlying motivation for studying in detail the already
established second quantization procedure from a different point of view. As men-
tioned in the introduction, when we consider the quantization of string theories, we
may face problems similar to those considered here even in the first quantization,
unless we use the light-cone gauge. This was pointed out long ago by Jackiw et
al. 8) Furthermore, there does not seem to exist satisfactory string field theories ex-
cept for Kaku-Kikkawa’s light-cone string field theories. We believe that our bosonic
quantization procedure may clarify these problems in the context of string theories.
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