Prog. Theor. Phys. Vol. 41 (1969), No. 2

The p-n Mass Difference Based on the Reggeized Tadpole Model

Kimio MIURA and Tsunetoshi WATANABE

Department of Physics
Tokyo University of Education, Tokyo

November 15, 1968

Recently Srivastava¹⁾ has calculated the p-n mass difference, assuming the Regge asymptotic behavior, and using the generalized superconvergence relation(G.S.C.R.) and has shown that the result is in good agreement with experiment especially on its sign, i.e. $\Delta m(p-n) < 0$. But he overlooks minus sign in Eq. (7) of reference 1) and this gives $\Delta m(p-n) > 0$. In this letter we investigate the p-n mass difference, following Srivastava's idea, but using some assumptions different from his. Our assumptions are as follows:

- (i) The contribution to $\Delta m(p-n)$ comes from ordinary low energy diagrams and high energy ones, as shown by Harari.²⁾
- (ii) The high energy contribution to Δm (p-n) may be calculated by the Regge pole theory as the Reggeized tadpole model suggested by Okubo.³⁾ We will consider two trajectories

 A_2 (1300) and π_V (1016) as Regge poles. (iii) Two generalized superconvergence relations are used as shown in Eqs. (5a) and (5b).

As shown by Cottingham et al.⁴⁾ we can express the p-n mass difference to first order in α by the forward amplitude for Compton scattering of a virtual photon of mass q^2 and energy $q^0 \equiv \nu$ by a proton or neutron as follows,

 $\Delta m \equiv m_p - m_n$

$$= -\frac{1}{2\pi} \int_{0}^{\infty} \frac{dq^{2}}{q^{2}} \int_{0}^{q} d\nu \sqrt{q^{2} - \nu^{2}}$$

$$\times \{3q^{2}t_{1}(q^{2}, i\nu) - (2\nu^{2} + q^{2})t_{2}(q^{2}, i\nu)\},$$
(1)

where the t_i 's are gauge invariant and even functions of ν . Low energy contribution to Δm is assumed to come mainly from nucleon pole and can be estimated by using the dipole-like form factor of proton and neutron.⁵⁾ Thus we obtain $\Delta m^L(p-n) = 0.62 \text{ MeV}$ as low energy contribution. Following the discussion by Harari, the high energy contribution to Δm is assumed to come from the high energy part of t_1 (q^2, ν) , not from $t_2(q^2, \nu)$, and is shown as

$$\Delta m^{H}(p-n) = -\frac{3}{2\pi} \int_{0}^{\infty} dq^{2}$$

$$\times \int_{0}^{q} d\nu \sqrt{q^{2}-\nu^{2}} t_{1}^{R}(q^{2}, i\nu) \widetilde{\theta}((i\nu)^{2}-\nu_{1}^{2}),$$
(2)

where ν_1 is shown in Eqs. (5a) and (5b) and $\widetilde{\theta}(\nu-\nu_1)$ is an analytic function of ν which plays the same role as a step function. From our assumption (ii),

$$t_1{}^R(q^2, \nu)$$

$$= \! eta_1(q^2) rac{1 + e^{-i\pilpha_1}}{\sin\pilpha_1}
u^{lpha_1} \! + \! eta_2(q^2) rac{1 + e^{-i\pilpha_2}}{\sin\pilpha_2}
u^{lpha_2},$$

which comes from A_2 - and π_{ν} -trajectory respectively. The existence of $\widetilde{\theta}(\nu^2-\nu_1^2)$ avoids the double counting as Srivastava does, and we can rewrite Eq. (2) by using a dispersion-like form of Eq. (3) (with $\alpha_1=\frac{1}{2}$ and $\alpha_2=-1$) as

 $\Delta m^H(A_2)$

$$= -\frac{3}{2\pi} \int_{0}^{\infty} dq^{2} \int_{0}^{q} d\nu \sqrt{q^{2} - \nu^{2}} \frac{\nu^{2}}{\pi} \beta_{1}(q^{2})$$

$$\times \int_{\nu,2}^{\infty} \frac{d\nu'^{2} (\nu'^{2})^{1/4}}{\nu'^{2} (\nu'^{2} + \nu^{2})}, \qquad (4a)$$

 $\Delta m^H(\pi_V)$

$$= \frac{3}{2\pi} \int_{0}^{\infty} dq^{2} \int_{0}^{q} d\nu \sqrt{q^{2} - \nu^{2}} \frac{\beta_{2}(q^{2})}{\pi}$$

$$\times \int_{\nu^{2}}^{\infty} \frac{d\nu^{\prime 2} (\nu^{\prime 2})^{-1/2}}{\nu^{\prime 2} + \nu^{2}}.$$
(4b)

In order to determine the form of $\beta_i(q^2)$ we assume two G. S. C. R. s:

$$\int_{0}^{\nu_{t}^{2}} \operatorname{Im} t_{1}^{R}(q^{2}, \nu) d\nu^{2} \cong \int_{0}^{\nu_{t}^{2}} \operatorname{Im} t_{1}^{P}(q^{2}, \nu) d\nu^{2},$$
(5a)

$$\int_{0}^{\nu_{1}^{2}} \nu^{2} \operatorname{Im} t_{1}^{R}(q^{2}, \nu) d\nu^{2} \cong \int_{0}^{\nu_{1}^{2}} \nu^{2} \operatorname{Im} t_{1}^{P}(q^{2}, \nu) d\nu^{2},$$
(5b)

where ν_1 is a finite energy. We put $\nu_1 = (q^2 + x_1)/2m$ with a positive free parameter x_1 . Srivastava takes $x_1 = 0$ which corresponds to nucleon pole but generally x_1 is not zero and is rather large. We estimate the high energy contribution to Δm by using m = 940 MeV, $x_0 = (850 \text{ MeV})^2$ and $x_1 = \gamma x_0$ and obtain $\Delta m^H (A_2) + \Delta m^H (\pi_V) \ge -0.17$ MeV which corresponds to $\gamma = 1$, i.e. ν_1 corresponds to N_{33}^* resonance. Therefore we obtain $\Delta m (p-n) \ge 0.45$ MeV which gives wrong sign.

In conclusion, we would like to make some comments on our unsuccessful result.

- (i) If a few resonances and a background term contribute remarkably to the Compton scattering amplitude in low energy region, we will have larger β_i than before.
- (ii) Some poles except for A_2 and π_V , for example, a conspirator of pion or fixed pole at J=0, will make a fairly large contribution to Δm .
- (iii) It is doubtful to use G. S. C. R. s for electromagnetic mass difference.
- (iv) If we assume the Regge asymptotic behavior for the amplitude $t=t_1$ $-[(2\nu^2+q^2)/3q^2]t_2$ instead of t_1 we may expect that the results will be improved.

The authors would like to thank Professor Y. Miyamoto for valuable discussions and a careful reading of this manuscript and Professor Y. Hara for helpful discussions.

- Y. Srivastava, Phys. Rev. Letters 20 (1968), 232.
- H. Harari, Phys. Rev. Letters 17 (1966), 1303
- S. Okubo, Phys. Rev. Letters 18 (1967), 256.
 Yu-Chien Liu and S. Okubo, Nuovo Cim.
 52A (1967), 1186.
- W. N. Cottingham, Ann. of Phys. 25 (1963), 424.
 M. Cini, E. Ferrari and R. Gatto, Phys. Rev. Letters 2 (1959), 7.
- 5) W. K. H. Panofsky, preprint SLAC-PUB-370.