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A statistical model with decorated double bonds on each pair of the Ising spins is presented.
The decorated Ising spin on one of the double bonds connects the neighboring Ising spins
of the matrix lattice ferromagnetically and the other connects them antiferromagnetically.

The critical concentrations for the ferromagnetic or antiferromagnetic transitions are found
for several types of lattices. The specific heat has a cusp at the Curie or Néel point. De-
pendence of Curie and Néel temperatures on the concentration ratio of ferromagnetic and
antiferromagnetic components is obtained.

§ 1. Introduction

Recently, the magnetism of compounds and alloys are subjected to the ex-
perimental examinations and they are classified into several types of crystal
structures, i.e. spiral-, magnetoplumbite-, perovskite-, NiAs- and corundum-type
~ structures. We restrict ourselves to the magnetic crystals which consist of two
or several kinds of magnetic materials such as MnSbh-CrSb which is known as
NiAs-type crystal, CoS;-CoSe, which is the pyrite structure and Invar (which is
famous for its small expansivity). The critical temperatures of them depend
on the ratios of quantities of magnetic materials contained in the crystals.

Figure 1 shows the experimental results of some compounds, where 7 in-
dicates the ferromagnetic transition temperature (Curie point) and Ty is the
antiferromagnetic transition temperature (Néel point).

We must note that there are three different types of phase diagram. The
first type (MnSb-CrSb) has the overlapping region between Ty and Ty curves,
which shows that the compound can change the state from the ferro- to antiferro-
and then to para-magnetic states as the temperature increases.” In the second
type (Invar), Ty decreases as the concentration of Fe (f.c.c.) increases and van-
ishes at 65% of Fe. If we increase the concentration of‘ Fe further, then Ty
appears and increases with it.” The third type such as Co0S;-CoSe, shows a
paramagnetic state at the intermediate concentration.”

Hirone, Maeda, Tsubokawa and Tsuya® have considered a mixed crystal of
MnSb and CrSb, where the metallic ions are arranged in a form of simple
hexagonal structure and non-metallic ions in a complex hexagonal structure.
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Fig. 1. Magnetic (electric) phase diagram of some compounds. (a) (Cr,Mn;_,)Sb (after Hirone et
alb). (b) FeNiMn or Invar (after Shiga®). N; mean electron concentration. (c) Co(S;Sei-z)z
(after Adachi et al®). (d) Pb(TiOy),(ZnOs); (after Sawaguchi®).

They introduced a parameter which defines the direction of the total magnetic
moment and calculated the magnetic energy of the system in the molecular field
approximation. Further, they showed the occurence of complicated magnetic
behavior at some fixed ratio of two magnetic ions. In this article, we consider
the behavior of these compounds when the ratio of two components changes.
The compound PbZrO;PbTiO," has also a similar property, but is more compli-
cated than MnSb-CrSb or Invar.

Brout? proposed a statistical model of random ferromagnetic system with
paramagnetic impurities and explained the qualitative property of the random
system. In 1966, Syozi” proposed a model of the dilute ferromagnetism and
calculated the critical concentration of non-magnetic impurities for the occurence
of the phase tranmsition. In the case of a square lattice, the system does not
exhibit any cooperative phenomena if it contains the impurities more than 0.5
in concentration. In §§2~4 new models are proposed and their thermal prop-
erties are discussed. The Curie temperature of the ferromagnetic substance
decreases as the antiferromagnetic component increases and at last it vanishes
at the first critical concentration. Futhermore as the antiferromagnetic component
increases, the Néel temperature appears at the second critical concentration and
increases gradually. In §5, a model with the anisotropic chemical potentials

is presented.
§ 2. Ising lattice with double bonds

We should like to propose an Ising model with decorated double bonds
between the nearest neighbor lattice sites of the matrix lattice (see Fig. 2). A
decorated lattice point on one bond is called the A site and the other is called
the B site. If an Ising spin is placed on the A site, it interacts with neighboring
spins on the matrix lattice points with the same interaction parameters J and
J(J>0). If an Ising spin is set on the B site the interaction parameter with
the spins of the both sides have opposite sign, i.e. J and —J. An occupation
of A site by an Ising spin corresponds to the ferromagnetic coupling with respect
to a pair of the neighboring spins of the matrix lattice and an occupation of
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the B site corresponds to the anti-
ferromagnetic coupling for the neigh-
boring spins of the matrix lattice.

To every site of the matrix lattice,
we attribute an Ising spin wvariable
#;(=+1), and to A and B sites, we
attribute spin variables ¢;; and 0
respectively which can take three
values +£1 or 0, where O corresponds
to the absence of an Ising spin on
the decorated site.

The grand partition function
H(L; & &) for this model will be re-
duced to the partition function Z,(K)
of the ordinary Ising model for the

Fig. 2. The double bond model for the square
lattice.

B(L; & &)=, 2 exp[L %{O‘ij(ﬂrFﬂj) + 0% (s — 1) } +5(2 5%;’**5’(2)0‘1{;?]
3 7

{44}y {034,047} @ 5,7)

matrix lattice.

= A 3 exp (K 33 mupty) = A2, (K), @

where L=J/kT, the parameters & and & are chemical potentials for the spins
on A and B sites respectively dievided by —£7, N denotes the number of lattice
points for the matrix lattice, and z the coordination number for the matrix lat-
tice. The expressions for A and K are given as functions of L, & and & cor-
responding to the following two cases: the independent double bond model, i.e.
the spin variables of the double bonds, are independent and the exclusive double
bond model, i.e. A and B sites can be occupied exclusively. '

§ 3. Independent double bond model

By an extended iteration process, we have
A= (2 ch 2Lef +1) (265 +1) (2 ch 2Le?’ +1) (268 +1), 2)
=2 ch2Lef+1) (26 +1) /(2 ch 2Lef +1) (25 +1). 3)
Easily we can get the concentrations p, and p, for the spins on A and B sites.
1= (1/2N)01n B/0¢
=ch 2Le* (1+¢) /(2 ch2Lef +1) +ef (1—¢) /(25 + 1), 4)
po=(1/2N)0 In E/0&’
= (1+6) /(25 +1) +ch 2Le” (1—¢) /(2 ch 2Le +1),  (5)

where ¢= (1/2N)0 In Z;/0K is the correlation of a pair of the nearest neighboring
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Ising spins on the matrix lattice point. When K=K, the Ising system shows
a phase transition as is well known. With the critical values, we can calculate
the phase transition temperature by Eqgs. (3), (4) and (5) for the fixed con-
centrations p; and p,. When p,=0, the
model is reduced to Syozi’s model and
the critical concentration pg=0.5 1is
obtained. The phase diagram has two
parameters p; and p, and the critical
surfaces are shown in Fig. 3 for the

square lattice.

Fig. 3. The phase diagram of the independent
double bond model. Two surfaces show the
Curie temperature and the Néel temperature
respectively. Here ferro-, antiferro- and para-
magnetic regions are abbreviated to F, A and P
respectively.

§4. Exclusive double bond model

In this model a pair of spin variables on the double bonds (5;;;0/) can
take four pairs of values (0; +£1) and (£1;0). Thus A and K in (1) are
given by

Al=4(e"" + ¢ ch 2L) (¢* + e ch 2L), (6)
= (" +ch2L)/(1+e"ch2L). (7

The mean concentration p of the Ising spins on A sites is given by
p=ch 2L (1+¢) /2 (e~ +ch 2L) + (1—e) /2 (¢~ ch 2L+1). (®)

As’ the occupation of A and B sites on each double bonds is exclusive, it
is evident that we have the relation p+p" =1, where p’ denotes the concentra-

tion of the Ising spins on B sites.
From Egs. (7) and (8), we obtain

2p—1—¢)ch’2L—-2(sh2K—¢c¢ch2K)ch2L—2p+1—¢=0, 9)

which connects L with K for a given p (see Fig. 4).

When p=1 or 0, Eq. (9) is reduced to the formula for the ordinary de-
corated Ising model (iteration process); ch(2L) =¢*® or e **
serting the critical value Ky for the parameter K and &¢ for the correlation ¢
of the matrix lattice to Eq. (9), we can get the critical point Ly for the present
model as a function of the concentration p, i.e.

ch 2Ly=[sh 2Ky—egch 2Ky {(sh 2Ky—¢¢ ch 2Ko)'+ (2p— 1) —ed'}"]
X (2p—1—gg " (10)

The solutions for L, which are given by taking 4+ signs respectively in (10)

respectively. In-
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correspond to the positive values of ¢y and Ky (the ferromagnetic critical values)
and the negative value of ¢y and Ky (the antiferromagnetic critical values) re-
spectively for the matrix lattice, whose sites can be divided into two equivalent
sublattices. These two branches are drawn symmetrically with respect to the
line p=1/2 (see Fig. 5). If we put

p=1—p", Ky=—Ky, €o=—Ex, 11)

in Eq. (10), then we can obtain a formula for the Néel point, which have the
same form as Eq. (10).

As the concentration p decreases from 1, Ly increases (1y =J/kLy de-
creases), until Ly becomes infinite (7¢ becomes zero), when po= (1+¢¢) /2. From
the symmetry with respect to the Curie point and the Néel point for the present
model, we can easily get the critical concentration py for the antiferromagnetic
ordering as py= (1+ey) /2. These relations for the critical concentrations can
be applied to several types of
matrix lattices and the results are

L tabulated in Table I.

061 : For the specific heat C, at a
fixed concentration p for this model

OS¢ whose matrix lattice is a square

lattice, we have
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Fig. 4. Parameter Las a function of K at a constant  Fig, 5. The phase diagram of the exclusive
2. The parameter p in the parentheses corresponds _ double bond model for the lattice shown
to the case of antiferromagnetic ordering. by Fig. 2.

Table 1. The critical concentrations and the critical data for matrix lattices.

Sq. Hon. Tri. Kag. Dice Diam. S.C. B.C. F.C.

exp(—2K) | v2-1|2—v3 | 1/v3 0.393 0.435 0.477 0.641 0.727 0.815
&g VZ/2 | 4/3/9) 2/3 | 074 0.668 0.57 0.357 0.268 0.244

po 0.854 0.885 0.833 0.872 0.834 0.78 0.678 0.634 0.622

PN 0.146 0.115 None None 0.166 0.22 0.322 0.366 None
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C,= (kL*/sh’2L) [sh 2L {(de/dK —2) sh 2K -+ 2¢ ch 2K} dK/dL
+ch 2L (ch 2K—¢sh 2K) —1], (12)

where
dK/dL=4sh 2L{ch 2L (2p—e—1) — (sh2K—¢ch2K)}
X {(ch®2L—2 ch 2Lch 2K+1)ds/dK
+4 ch2L(ch2K—¢esh2K)}™, (13)
which bas a symmetry with respect to the concentration p=1/2, ie. Cp=C,

=Ci_p. When p>pg or p<lpy, C, has a cusp at the critical point Ly where
it is equal to

Coo= 201 —p)}"R[{(2p—1) v2—1} (60"~ 6p+1/2) |
+{20°— C+V2) p+ (24 v2) /2} (4p* —4p+1/2)] (14)
and the tangent tends to be vertical on both sides of the cusp. When p is
slightly greater than pg the other broad peak appears. When p=1/2, C, is

- reduced to the specific heat of a linear chain, i.e. C,y=£kL?ch™*L (see Fig. 6).

In this exclusive double bond model we introduce a factor o by which the
antiferromagnetic coupling J is multiplied, i.e. the antiferromagnetic couplings
with neighboring spins are aJ and —aJ. Then the case @=1 corresponds to
the above mentioned model and the case a=0 to Syozi’s model of dilute fer-
romagnetism.” For this generalized exclusive double bond model, the critical
points Ly are determined as functions of the concentration p of the spins on A
sites from the equation

Co
p ] . .
o A ]
9_

— pP-=i.
P
Y _p-094
7 s pP=092
P=092 P=09
6{ P=02 p'O.855
p=o.asx — P9
51 pP=084 p3084
-n p=08
41 P=08 P:074
pP=074 I
3{ p-05 ; P=0.5
2]
] - Fig. 7. The phase diagram of the exclu-
A l sive double bond model with factor .
0 | R 2 — I/L ’ Each pair of curves corresponding to
a value of & separates different mag-
Fig. 6. Specific heat C, of the exclusive double bond netic regions, i. e. F and P or A and
model at p (=1/2) versus 1/L. For p<{1/2, curves P. The notations F, A and P are the

for C, are obtained by the equation Co=Ci_y. same as those in TFig. 3,
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_ {ch 2aLg—exp (F2Ky)} {(1+eg)ch2Ls+ (1 Feg)exp(£2Ky) } (15)
2(ch 2Ly ch 2aLy—1) ’

p

where each of the double signs corresponds to ferro- and antiferro-magnetic regions
respectively. This result for the square lattice is represented in Fig. 7, where
ferromagnetic region corresponding to each value of « except a=0 or 1 has
two critical points” within the appropriate limits of concentration p below pg.
In Fig. 7 we omit the curves for a>>1, for no new feature appeares except that
the shape of curve limiting ferromagnetic region is exchanged with that limiting
antiferromagnetic region.

§ 5. Anisotropic model

In the exclusive double bond model, it is interesting to count the number
of spins on A sites separately according to their bond directions. We attribute
different parameters for the chemical potential according to their bond directions.
For simplicity, we confine ourselves to the case of a square lattice. In this case,
we have two partial concentrations p, and p, which correspond to the spins on
the horizontal and vertical bonds respectively. By the same consideration as in
the former model, we obtain a pair of equations which determine the critical
partial concentrations py¢ and pye given by

pic=A+¢0)/2, o= A +ey) /2, (16)

where &¢ and &y are the critical values of the correlation functions for the
anisotropic Ising model given by

gio=sign (K;) (2/7) cth(2K;p)tan™ (sh 2K;) (1=1,2) an
and
sh 2| K| -sh 2| Kyl =1, (18)
where K,y and K,y are the critical values of
the inteljaction parameters for'the h'orizontal ‘fj ‘ t
and vertical bonds of the matrix lattice. 8183}

The curves of the critical concentration
on the p, versus p, plane are shown in Fig. 8 p | P
where F, A and P denote the ferro-, antiferro-
and para-magnetic regions respectively.

When two partial critical concentrations "mem ﬂf

are equal, i.e. pyg=py, their numerical values

: - o 86—~ T BBy |
are equivalent to the critical concentration for A
the former case, ie. piw=piw= 2+ V2) /4= Fig. 8. The phase diagram of the ex-
0.8535-+ and piy=pay= (2— V/2) /4=0.1416-.-, clusive double bond model with the

It is easily calculated that if p,¢ is increased anisotropic Chemlca,l potentials. 2,3
concentration of Ising spins on hor-

to 1, ps decreases to (2+m)/2r=0.8183--, izontal bonds. p,; concentration of
where we have used the relations : Ising spins on vertical bonds,
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cio—1, o> (2/m) as Kig—oo, K,n—0. (19)

It is interesting to note that &y does not tend to zero as Kyo—0 (K g—>00 by

7).

1)
2)
3)
4)
5)
6)

)
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