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A gauge invariant local electrodynamics with the mass-changing minimal current giving
rise to excitation processes of baryon or lepton is exactly formulated by means of introducing
two ghost gauge fields. It is shown that the whole S-matrix in this formalism is equivalent
to that in the conventional formalism with the Feynman gauge and without the ghost fields.
On the bases of these arguments, a possible form of phenomenological mass-changing current
vertex function of nucleon is suggested.

§1. Introduction

Recent experiments on ep—ep, ep—>eN* and N*—Ny give us the knowledge
of elastic and inelastic nucleon form factors for a wide range of momentum trans-
fer. Many authors have tried to explain the experimental behaviour of the form
factors in terms of the internal structure of nucleon and its isobars based on some
speculative particle models. The essential point of their works, especially for
ep—eN* and N*—Ny, is how to construct a mass-changing electromagnetic cur-
rent vertex function corresponding to the transition N*22N+one real or virtual
photon.) Besides these processes, similar mass-changing currents would also ap-
pear in possible electromagnetic excitation processes of the electron (or generally
lepton) as recently suggested by a few papers.? We may, therefore, point out
the important role of the mass-changing electromagnetic current in future elementary
particle physics.

As is well known, however, we do not necessarily have a satisfactory theory
of the mass-changing current, because the mass-changing minimal electromagnetic
current is not subject to the conservation law or gauge invariance. Fujimura,
Kobayashi and Namiki® avoided this serious problem, in their quark model-theo-
retical arguments, by introducing the ad hoc replacement of the non-conserved
current j," by (04 —¢,.9./¢")j’, ¢u being the momentum transfer due to photon.
However, we do not know why this replacement is justified.

In this paper we shall discuss gauge invariance and the conservation law of
current in a quantum electrodynamics modified by introducing the mass-changing
minimal current. The whole theory is formulated only within the framework of

* On leave of absence from Research Institute for Theoretical Physics, Hiroshima University,
Takehara, Hiroshima-ken.



2094 M. Namiki and K. Yokoyama

local field theory, because troubles of the mass-changing current in the quark
model theory are essentially the same as those of the mass-changing current in
the local field theory. We start with introducing ghost gauge fields which serve
to keep the. conservation law of current and gauge invariance (§2). After free
field quantization (§ 3), it is shown that the whole S-matrix in the present for-
malism is equivalent to that in the conventional formalism with the Feynman gauge
and without the ghost fields, if the gauge parameter is appropriately chosen §4).
Finally, we suggest a possible form of phenomenological mass-changing current
vertex function of nucleon for the processes ep—>eN* and N*— Ny on the basis
of the above arguments in the local electrodynamics (§5).

§2. Gauge invariant formalism

In what follows, we deal with a system in which mutual transitions between
two kinds of Dirac particles with masses different from each other take place
through emission or absorption of a photon as well as the usual electromagnetic
process. The vertex leading to such transitions for hadron or lepton is considered
to come from the strong or other interactions different from the pure electro-
magnetic interaction. In this paper, however, we confine ourselves within the
electrodynamics alone and introduce the corresponding vertex as an effective local
electromagnetic interaction with coupling constant eg. The constant ¢ is introduced
as a substitute for the above strong or other interactions. We shall not enter
into discussion of the origin of g.

In order to obtain a gauge invariant formalism for the above system, we can
see that, in addition to two kinds of Dirac fields ¢)(z) with mass = and ¢’ (zx)
with mass m’, a massless scalar dipole field B(xz) and its pair field B,(x) are
further required as gauge fields. As will be shown later, we can eliminate these
ghost fields from the S-matrix by making proper choice for the dipole character.
In terms of the field operators ¢ (x), ¢’ (z), A.(x), B(x) and B,(x), the Lagrangian
density desired is given in the form

L=—Fq0+m)p—F (ro+m") ¢’ —%F,,F,.,——;—(a,.AJ

—50,B0(0,B+ - A,) - %B: +jsApt js’ (Au+ad,B), (2-1)
a
where F,,=0,4,—0,A, and
Ju=1e (J’fﬂib + (Z-,Tﬁﬁb,) s @- 2)
T’ =1eg ("7 + P1a’). 2-3)

Note that m=~m’ here. The constants @, and ¢ are all real, and ¢ denotes a
sign factor (¢=1) which determines the metric of the space of ghost states. The
current j,(x) is the usual one, while j,’(z) represents the mass-changing current
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giving rise to mutual transitions between two kinds of Dirac particles.® Although
the constant ¢ in (2-3) is a substitute reflecting the effect of the strong or other
interactions, its value is completely arbitrary within the present framework.

From (2-1), (2-2) and (2-3), we have the equations of motion for the Dirac
fields ¢(x) and ¢’(x) in the form

(r0+m)p=ier,Aup+iegr,(Au+ad.B)y,

2-9
Go+m’) ¢ =der, A + ieJ1u(Aus+adB)¢ .
It then follows that
0.Js=0, (2-5)
Dpis’ =ieg (m—m") By — 7). @2-6)

Equation (2-6) shows the non-conserved property of j,’(z). The equations of
motion for other fields become

OA,=—J,,
' 2.7
Jlt =j15 +j/t, - iaIJBO s ( )
a
OB=ebB,— 19,4, , (2-8)
a
DBO = eaa,.jp'. (2 ° 9)
Equations (2:5), (2-7) and (2-9) yield
0,J,=0. (2-10)

We note that the total current J,(x) is conserved, in spite of 9,7, 5~0.
The Lagrangian density and all the equations of motion are invariant under
a cnumber gauge transformation defined by

A,—»A,+0.4, OA=0,
B-»B-14, BB, (2-11)
a

¢__>eisd¢ s ¢I__>eied¢/.

The transformation (2-11) represents a straightfoward extension of the usual
gauge transformation, and therefore the gauge invariant character of the whole
theory is guaranteed.

If the current j,’(x) is absent, that is, g=0, the last term in J,(z) becomes
redundant. Therefore, we may understand that @' is of the same order of mag-

* In this paper we shall simply call j,’(x) proportional to v, the minimal mass-changing current,
even though the name of minimal current is to be ascribed to those which are introduced through
the additional term j,A, obtained by replacing 0,~0,—ieA, in a free Lagrangian.
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nitude as ¢g. It will, however, be shown in the next section that the presence
of this term is not essential if [1B,=0.

§3. Free field equations and quantization

If the electromagnetic interaction is absent (¢=0), our equations of motion
become

0A,.=2%4,B,,
a

O0B=¢6B,—10,4,, (3-1)
a
0B,=0,
which yield
[10,4,=[1A,=[*B=0. (3-2)

Equation (3-1) seems to show that some unknown background interactions like
the strong or other interactions still remain in the field equations even if e—0,
unless @' is of the order of e. In this case, however, we can eliminate the
contribution of By(x) and 0,A,(x) to the equations of motion in the sense of
expectation values of field operators. Since both B,(z) and 0,A,(x) satisfy the
massless Klein-Gordon equation, we can always put the supplementary conditions

B, (z)|0>=0, 3-3)
0, A, (2)|0>=0 3-9
on the physical state |@), and can have the Maxwell equations in the form®

DA, (x)>=<0,4.(x)>=0.

Therefore, we can take (3-1) as our free field equations, so that the interaction
Lagrangian becomes

Linw=j.Au+j.’ (A, +ab,B). (3-5)

In the case of the interacting fields, we have no guarantee for (3-3), though
the Lorentz condition (3-4) still holds due to (2:10). As will be shown in the
next section, however, the contribution of B(x) and B,(x) can be eliminated in
the S-matrix and we can always put the condition (3-3) for the asymptotic in-
coming and outgoing fields.

Quantization of field operators in (3-1) can be done by means of the follow-
ing commutation relations:
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[4.(x), A,(z")]=i0,,D(x—z"), )

[A.(2), B(z")] =i18,D(z—2z"),
a

[B(2), B)]=i(p~—) D(z—2), (3-6)
[B(x), By(z’)] =ieD(x—z’),
[A,, (-r): Bo(x,)] = [Bo(x): Bo(-r’)] =0 aJ
where the distribution D(x) is defined by
5] _ —i 4 7 (B2 ik .
D)= jd ke (k)07 (B) e, (3-7)
and it satisfies
OD(z)=D(x), D(—z)=-D(x), (3-8)
D(z) =0,D(z)=0,0,D(x) =0, at z,=0. (3-9)

It is shown that the commutation relations (3-6) are consistent with the free field
equations (3-1). If we require consistency between commutation relations and
field equations alone, we have a possibility of taking more general forms for the
commutation relations. For example, we can quantize A,(z) by

[Au(2), A, (z')] =i(0 +a0,0,) D(z—z") +i$0,0,D (x —z*)

with arbitrary constants a and 8. We, however, further require the canonical
quantization which compels us to take ¢ =/8=0 in the above relation. The detailed
derivation of (3:6) is given in the Appendix.

It is also possible to take our free field equations and interaction Lagrangian
in the form

I:-]14'15 = 0 >
(3-10)
[:]B:ebBo > DB():O >
and
L= —fapBoAp+ijp+J}.’ (A,+ad,B), (3-11)

respectively. In this case, we have the following canonical quantization:
[A.(2), A,(2")] =0, D(z— "),
[B(z), B(z")]=ibD(x—z’),
[B(x), By(z’)] =ieD(x—xz’),
[A.(x), B(z')] = [Au(x), Bi(z")] = [Bs(x), By(z’)] =0,

which are equivalent to (3-6) in the canonical sense [see 3-9)]. It is easily

(3-12)
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shown that the contents of the S-matrix do not alter in either case of taking (3-5)
or (3-11) as the interaction Lagrangian, apart from treatment with respect to

external lines. . )
We have so far applied only the Feynman gauge formalism to A,(x). We

can also apply any covariant gauge formalism to A,(x). For example, if we
want to use the Nakanishi-Lautrup formalism® in this case, it is sufficient to re-
place the Lagrangian density (2-1) with
L->L-Go,A,++Gc + 15,4,y
2 2 :

and set up another supplementary condition to restrict {0> with G(x) as G (z)|0)> =
0, where G(z) is a newly introduced scalar field and 1 represents a gauge para-
meter. We can develop the theory in a way parallel to that in the Feynman
gauge. In the next section, however, we show that a covariant gauge to A,(x)
can be obtained in the interaction picture by a unitary transformation to state
vectors without changing the S-matrix. Therefore, there is no necessity in start-
ing with covariant gauge formalism, as far as we stay within the present framework.

§4. The S-matrix and elimination of ghosts

We here take (3:5) as the interaction Lagrangian. The free field equations
and commutation relations are given by (3:1) and (3:6), respectively. The S-
matrix in this case becomes

S=T* exp [i jd ‘ZLint (»’C)] >
Lini(x) =ju(x) Au(2) +7,/ (x) {Au(2) +a0,.B(x)}.

Equations (2-5) and (2:6) remain as they are. Boson propagators appearing in
S can be obtained from (3-6) as follows:

O0]TAu () A, (z')|0>=0,Dr(x—z"),
0| TA.(x)B(z")[0>= —<0|TB(x) Au(z")|0)

(4-1

16, Dp(z—2", (4-2)
a

OITB@)B@)(0)= (6==) Drtz—a),
a

where
—_ 1 4 ikx . _— 1
D)= osr [4RDs®,  iDr =5 -
& _ 1 a1 ikz D — 1
D@ = e [44Ds e, —iDre) =t
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We note that, on account of (3-9), the distinction between T and T* operations
disappears in this case.

In every diagram of S, there are only three types of propagation as far as
Boson lines are concerned. Two points z and z’ are joined with §,,Dr(x—z")
if they are specified with the j,- and j,-vertices (Fig. 1). If they are specified
with the j,- and j,’-vertices, the propagator D,,(z—z’) defined by

Dﬂv(x—x,)
={0|T'Au(x) {A,(z') +ad,B(z")}|0)
={0|T{A,(x) +ad,B(z)} 4, (z")|0), J
D,,(x) =0,,Dr(z) —0,0,D5(x)
joins them (Fig. 2). If the two points are specified with the j,”- and j, -vertices,
they are joined with the propagator D;,(x—x’) defined by
Diy(z—x") ={0|T{A,(x) +ad,B(2)} {A,(z’) +ad,B(z")} |0>,}
D}y (x) =0,Dr(x) — (1+a%)0,0,Dr(x)
(Fig. 3). In the momentum space, the Fourier transforms of D,,(x) and D,,(x)
are

4-4)

(4-5)

‘DI‘P (k) = 6I‘PDF (k) + k,,k,ﬁp (k) s
D, (k) =0,,Dz (k) + A+ a*b) kb, Dy (k),

respectively. We note that D,,(k) is nothing other than the propagator in the
Landau gauge. Such a representation has already been used by Fujimura, Kobayashi
and Namiki® in their ad hoc replacement of the non-conserved current j,” (k) with
On—kuk, /B ], (). '

The propagators D,,(k) and D),(k) have the double pole character due to
Dr(k) (see (4:3)). From the fact that D,,(k) is always incident with the j,-
vertex (the comnserved verfex), we can eliminate its double pole contribution, as
will be shown later. For Dj,(%), however, we have no such favourable circum-
stance, and therefore we should put

(4-6)

p=—1 4-7)
a

in order to eliminate its double pole contribution. The above relation corresponds

8 Dr (x-x") D,, (x-x") D x-x)
A A e o (L eor ~es
m(m’) A’f) mim’) %m')

Fig. 1. Fig. 2. Fig. 3.
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to a ghostkilling condition which is inevitable to guarantee the unitarity of the
S-matrix. In this way, the dipole structure of the fields B(x) and B,(x) is
determined by the parameter a.

We are now in a position to show that the double pole in D,,(£) can really
be eliminated. The reason why such an elimination is possible is simple. The
theory is invariant under the gauge transformation (2-11) from the beginning,
but the interaction Lagrangian Ly.(x) suffers a superficial change as j,(x)0,4(x).
Therefore, it is rather natural that the term proportional to k,%.Dz(E) can be
eliminated if it is incident with the j.-vertex, in spite of the presence of the non-
conserved j,’-vertex.

To show the circumstances strictly, let us treat the Schrédinger equation in
the interaction picture. FEquivalence of T and T* operations in this theory tells
us that the interaction Hamiltonian is simply given by

Hipe (.Z‘) = —Lin (x) . (4 : 8)

We can show that (4-8) is really a valid Hamiltonian in this interaction picture.
To prove this, it is to be noted that the commutation relations (3-6) play essential
roles. The Schrédinger equation of the state |@(2)> is

10(5)>=S8@®)10(—o0)>,
iSO =Hu®S®,  Hu@®=— [dsLu) } @9
From (3:4), we have the Lorentz condition in the usual form
2(z; )10()>=0,
2z =0,4,9@) ~ [ _dwD® @) } @10

Ty’ =t
where x, is not necessarily equal to £ This form is derived from the fact
[A.(x) +ad.B(x),0,A,(x’)]=0, (4-11)

which is a direct consequence of (3:6) and (3-8). To show that the condition

(4-10) is compatible with (3:1), (3-6) and (4-9), it is sufficient to see that the
following relations hold similarly to the usual theory:

O.82(x; ) =0,  [2(x;8),2(z";£)]=0,

4-12

the last of which is derived from (4-11) and
Liw (@), ()] =[4 (2), ()] =0 for z=uz. (4-13)®

Here we have neglected possible Gots-Imamura-Schwinger terms® which play only

* It also holds that
[72(@), 40’ (&) ]1=1j, (®),jo’ (/)]1=0 for xo=zo.
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pathological roles.
As the next step we transform [0(2)> into |0’ (¢)> by

[7@&>=U®0®)), S @®)=U®S@®), (4-14)

where U(#) is a unitary operator given by
U =, G(&) =0 [d'xi(2) B() (4-15)
13

with a real parameter ». The procedure is analogous to that of Ref. 6). It
follows from (3-6) and (3-9) that the field operators A,(x) and 8,B(x) are
invariant under this transformation. The currents Ju(x) and j’(z) also remain
invariant on account of (4-13). The Schrédinger equation (4-9) suffers from
its change by (4-14). A simple calculation leads to

iS’ (¢) = Hipw(5) S’ (2), }

, . (4-16)
H-int (t) =IIint (t) '—G(t)’
giving

Hip(2) = — Id "% {ju(Au+00.B) +j,/ (Au+ad,B)}. (4-17)

The last step is due to (2-5).

In this new representation (4-14), the propagators
00 Dp (k) +0(05 2 + 2V 1,45y k),

e a (4-18)

6I‘PDF (k) + (1 + wab) k#kuﬁF (k)

appear in place of the old 0,,Dr(k) and D,,(k), respectively. In this way, we
have obtained a general covariant gauge representation with an arbitrary a, & and
0.*  The Lorentz condition (4-10) is transformed by (4:14) into

& (z;0|0"(@)>=0,
(4-19
2@ =0,4,9@) ~(1-2) [ 2wDW(z—2)j(a),
zy’ =t
where we have used (3-6), (3-8) and (4-13). The compatibility relations of
the type (4-12) are also proved after (4-14).

If the usual adiabatic switching of interaction is carried out, that is, j,(x) —0
as t—>+ oo, then we have ’(c0) =S(o0) from (4-14) and (4-15). Therefore,
we can calculate our S-matrix with any covariant gauge under the relation (4-7).
Elimination of the double poles in the propagators (4-18) is now a trivial problem.

* If we substitute (4:7) into the first of (4-18), the coefficient of k,,k,,ﬁp(k) becomes
2(1—w/a)w/a=1, showing 1/2=1>—oo. If we want to get the range (0, 1/2) for 2, we may replace
B(x) in (4:15) with a new field B/(z) which is completely independent of other operators and
satisfies [B/(z), B/ (z/)]1=iD(z—2/).®
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Choosing w=a, we see at once that both of the propagators (4-18) become iden-
tical with Dj, (k) in (4-6). Under the relation (4-7), the propagator D,, (k) is
equal to 0,,Dr(k). Thus, it is proved that all double poles of the propagators
can be eliminated by the relation (4:7) even if we work with an arbitrary gauge.

In the case w=a with (4:7), the S-matrix is equivalent to that of the Feynman
gauge formalism with an interaction Lagrangian given simply by

Untin') Ap .
This fact tells us that whether the current j.”(x) is conserved or not brings no
change to the whole structure of the S-matrix if (2-5) and (4-13) hold. Although
we have been able to eliminate the dynamical contribution of the ghost fields

B(x) and B,(x), it is to be noted that their existence is necessary in the gauge
invariant formalism.

§ 5. Discussion on phenomenological current vertex

In previous sections we have shown that the gauge invariance of the whole
theory is still kept in spite of the presence of the mass-changing minimal current.

It is true that the conclusion is obtained within the framework of local elec-
trodynamics, but the essential connection of gauge invariance to the mass-chang-
ing current is common both in the point particle model and in the extended par-
ticle model. We can understand this situation from the fact that the non-conserved
property of the mass-changing current in the extended particle model® is quite
similar to (2-6) in the present point particle model. Therefore, we can suggest
that the gauge invariance of the phenomenological S-matrix with the mass-chang-
ing current in the extended particle model is kept.

Fujimura, Kobayashi and Namiki’s ad hoc replacement of the non-conserved
current vertex {Py|J,’| Py for ep—eN* or N*— Ny with {Pg|J,| P> = (04 —kuk./F)
{Ps|lJ/| Py, in which k=Pr—P;, may be justified by the above arguments.
Here the second term (cck™®) must have no effect because of the conserved prop-
erty of the electron current or of the Lorentz condition of the real photon fields.
The conclusion of this paper is that such a term (ock™?) can be completely elim-
inated from the whole S-matrix. Thus, we may safely use the current vertex
function

{Py|J,| Pry=1ien (Pr) {T»F (kY + ﬁjf wk, (k’)} u(Pp,
where we have followed the usual notation.

Acknowledgements

One of the authors (K.Y.) is indebted to the Japan Society for the Promo-
tion of Science for financial support, which enabled him to stay at Department



Gauge Invariant QED with the Mass-Changing Minimal Current 2103
of Physics, Waseda University, as a visiting physicist.

Appendix

Derivation of the commutation relations (3-6)

The commutation relations among the field operators should be consistent
with the field equations (3:1). Since A,(x) and B(z) satisfy (3-2) and (B, (z) =
0, we generally have the following form:

[Au(@), A, (2) ] =700 +0,d,) D(z—2’) +i (@00 +a”0,0,) D(z—27),

(A-1)
[A.(2), B(z')]1=180,D(z—z") +if’0,D(z—z’), (A-2)
[A.(2), Bi(2")] =iy0,D(z—z’), (A-3)
[B(x), B(z")]=i0D(x—z’) +i0’"D(z—z’), (A-9)
[B(z), By(z")] =ipD(z—~z’), (A-5)
[Bo(x), By(z)] =0, (A-6)

where all the coefficients are real constants. The last relation (A-6) is a direct
consequence of (3-1), (A-3) and (A-5).
Operating [J on both sides of (A-1) with respect to z/, we find

Z[44(2),0.B,(2)] =i (@', +0a"0,0,) D(z—z"),
the left-hand side of which should also be
—i£40,0,D(z—x’)
a
from (A-3), giving
a’=0, T=—caa”. (A7)
Operation of [J on both sides of (A-2) with respect to x leads to
= [0.By(2), B(2)]=if'0,D (z— ).
The left-hand side should also become
i£.00,D (z—x")
a

from (A-:5). Therefore, we have
p=¢eaf’. (A-8)

On the other hand, if the operation is carried out with respect to x’, it follows
from (3-1), (A-1) and (A-3) that
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[A.(2), Bo(@)] — L [4,(2), 0,4, (z")] =i80,D (x—z')
a
—ieby9,D(z—2') + - (1+a”)0,D(z—7').
a

Utilization of (A-7) and (A-:8) leads to

(A—ep)a=e(1—a’b)7. (A-9)
Finally, operating [] on both sides of (A:4) and using (3-1), (A-2) and (A-5),
we find

b [By(z), B(z)] — % [0,4,(x), B(x")]=i8"D(z—z’)

—ishpD (z—z') —i~8'D(z—z7),
a
giving
N .
o =e(6—1)o (A-10)

due to (A-8).
The field equations (3-1) give only the above five relations in (A-1) ~(A-6),
and therefore the most general form of the commutators becomes

[44(2), A.(2)]=i(@u+aB,0) D(@—2) —i ‘i’; 9,0,D(z—z"),
—a
[A,(z), B(z)]=i80,D(z—z’) +i<-00,D(z—z"),
a
[A.(2), By(z")] =i3%aw(x—x'>, (A-11)
—a

[B(z), B(z')] =D (z— ") +ia<b——1;>pﬁ(x—x’),
a

[B(x), By(z")]1=ipD(x—x’),

[By(x), By(z)]=0,

where «, 8,0 and p remain arbitrary.
Canonical quantization determines these coefficients uniquely. From the Lag-
rangian density L.., in (2-1), we have

[B(x), eBy(z’)] =i0 (x—x7), )

[Bo(z), eB(z") —L Ay(z)] =id (x —x’),
a for xy=x,, (A-12)
[B(x), B(z’)]=[Bo(x), By(z)]

=[Au(x), B(z")]=[Au(z), Bs(z")] =0/
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and the usual relations among the electromagnetic field components. It follows
from these canonical relations and (3-9) that

a=F=0=0, p=¢. (A-13)
Substitution of (A-13) into (A-11) leads to (3-6).
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