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The critical dimension in the string model is analysed in terms of the field theory in the
two-dimensional Minkowski space-time which is obtained by transforming the basic variables
r and 0. It is proposed to allow the dimensionality of this internal space-time to be conti-
nuous and go to the limit of two dimensions. The theory is then invariant under the Lorentz
transformation in our ordinary space-time with any dimensionality including the realistic
value four.

§ 1. Introduction and summary

In the preceding paper” (hereafter referred to as I) we studied the commutation
relation of the energy-momentum tensor in the field theory in the N-dimensional
Minkowski space-time. We were concerned mainly with the vacuum expectation
value (VEV) called the anomalous term. In the model of a massless free scalar
field this anomaly calculated for N=2 goes over to the anomaly of the Virasoro
algebra (VA) of the string model when we change the variables and make certain
analytic continuation (the Wick rotation). We showed that the anomaly disappears
if we calculate VEV first with N=%2 and then take the limit N—2 from the
larger side.

In this analysis we found that the anomaly obtained for the fixed value N=2
is a consequence of the ‘“quasi Nambu-Goldstone boson” which is a special con-
figuration of the two massless particles moving in the same direction. This obser-
vation suggests that the limit N—2 will be smooth giving the value for N=2
chosen at the beginning unless the above ‘“parallel configuration” occurs in the
two- or more-particle intermediate state. In §2 of the present paper we confirm
this in the example of the “normal term” of the commutator.

We then extend the analysis in I to the argument of the critical dimension
in the string model. We rewrite in § 3 the relevant equations in the string model
in terms of the equations in the N-dimensional Minkowski space-time. The crucial

question in the light-like gauge is whether or not the condition”?

[Mi~, M~]1=0 (1-1)

holds true, where M- (i=1,2, ---, D—2) 1is one of the generators of the rotations
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in the ordinary space-time. Should the condition (1-1) be violated, the theory
would be no longer invariant under the ordinary Lorentz transformation.

Exactly as in the anomaly of VA, it turns out again that there occurs a
subtle situation in the two-particle intermediate state. The detailed analysis in
§ 3-1 shows that for the fixed value N=2 the one-particle matrix element of
(1-1) acquires the anomaly due to the emergence of a quasi Nambu-Goldstone
boson, resulting in a spontaneous breaking of the ordinary Lorentz invariance.
Since, however, the anomaly is a sum of several terms, one of which is essentially
the anomalous term of VA, there is a chance of cancellation among the terms.
The cancellation does occur for D=26; the well-known result.”"?

In §3-2 we now apply the method of the continuous dimension in a manner
completely parallel to that in § 3 of I. Although some complications arise because
many invariant functions are involved, our final result is simple: Each of the
terms that contribute to (1-1) disappears separately in the limit N—2+¢. The
Lorentz invariance of the theory in the ordinary space-time (not the fictitious
space-time of N dimensions) follows for any dimensionality including the realistic
value D=4.

The final section 4 is devoted to the concluding remarks. In the three append-
ices some of the mathematical details are presented.

§2. Normal terms

We consider a set of real massless free scalar field ¢*(x) in the N-dimensional
Minkowski space-time (called the internal space-time, IST, in I); the suffix 7 is
for the external space-time (EST, our ordinary space-time) and runs from 1 to
D—2 in the light-like gauge with D being the EST dimensionality. For the fixed
value N=2 the equal-¢ commutation relation is given by”*

[T.(2), To(0) 1= +i[ T (@) + T2 (010" (x)
+[(D—2)/247]0" (x). 2-1)

Here we define the canonical energy-momentum tensor 7, by

T, (x) = g :[0,6°0.6" — $7,,0,40"¢']: (2-2)
and
T.=3(Ty+Ty). (2-3)

The metric is diagonal; —7p=7,;=-+1. The first term of (2-1) proportional
to 0’ (x;) is the normal term which gives the conformal algebra, while the second
term proprotional to ¢”(x;) is the anomalous term. We check if the normal
term remains unaffected if we let IN be continuous and take the limit N—2.

Since T, is bilinear in ¢, it suffices to examine the one-particle matrix element

$g"[Tw(2), Tos (0) 11", 249
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where |¢">, for example, is the one-particle state of the field ¢’(x). Notice that
the zero-frequency part which is not well defined in two-dimensions does not con-
tribute to (2-4) since ¢*(x) appears in T, always with a derivative.

It is obvious that only the one-particle intermediate state contributes to (2-4);

@I T (2) T (0) |¢"): = jdk<<f [T () |&*)<EF | Ts (0) ">

=0"(2m) 7" (20) e TG0 (a5 2, (2-5a)
where a bold-face letter stands for a vector in #=N—1 dimensions. Also
0=q"=|ql, (2-5b)
and
Gibe(@3 ) = @) [l ™ (2:50)
with
I so0= L@y + Q= (ak) 1La5ks + asko— 000 (ak) T, (2-5d)
E=k"=|k|. (2-5e)
From the form of (., the relations
Gios(a; ) =G0 (—a; ), (2-6a)
=Gi)oe(g; ), (2-6D)
=G (q; @) (2-6¢)

follow immediately.
We must add the crossing symmetric term which is obtained from (2-5a) by
g—>—q and a<>b. By virtue of (2-6) the total contribution is found to be

@I T () T (0) |q") = 0" (27) "0 cos gz Gi)ys (a5 ).
The matrix element of the commutator is then obtained:
{G'I[Tw(x), T, (0)]1¢">=0"(27) "0 ' cos qx
X [GLloe (a3 ) =Giosl(q; —2) 1, 27

where use has been made of (2-6¢c).

We decompose G$,,(q; x) into the invariant functions ¢, (z);
G3os(q; ) = ZﬂpragA( ' (). (2-8)

By taking into account the symmetry properties (2-6) and the fact that (2-5d)
is bilinear in ¢, the tensors IT%),, are given by (A-4) in Appendix A. Not all
of the twelve tensors are independent of each other if N=2. It is convenient
to introduce the tensors with primed indices which vanish as N-—2. They are
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defined in (A-5). These are substituted for the tensors with the corresponding
unprimed indices. The coefficients a,p are defined by

, p0 (A B) __ 4
HM pot )H/gv,)mr— (q0> 4B ’

which are tabulated on Table II in Appendix A.
Multiplying IT**? by .0 vields

79I 00= (aR)*Ba 2-9)
where

Bio=—PBarr = — B =— (1/2) B =2(N—2),

Be=—1,

B =—(N—2)*,

other Fs=0. (2-10)
Combining (2-5¢) and (2-9) we get

TG, (a5 ) rus = B4 (¢0) 4™ (23 0), (2-11)

where use has been made of (2-5e).
This suggests that the function ¢4 (x) is also of the form

94" (2) =, 4™ (250), (2-12)
where the constants «y are determined by

2] asps=Pa. (2-13)

In the method described in detail in Appendix B, the solution in the limit N—2
is obtained;

an=1/2, au=-—1, an=1/2, other a’s=0. (2-14)
Substituting (2-12) and (2-14) into (2-8), and making use of
115504 (x5 0) =0,

we obtain

lim G2y (a5 2) = 12 0ed ™ (a; 0), (2-152)
where
9=~ e+ 3T (2:15b)

This is now to be substituted into (2:7). Recalling that II{),, is an even
function of the derivatives, we finally arrive at

}}_I.IZKQGI [T, (x), T, (0)]]g">=i0""(27) " (cos gz /)T D), ,s4(x;0). (2-16)

In deriving the result (2-16) we find no abrupt change at N=2. We in fact
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confirm that (2-16) agrees with the result obtained if we chcose N=2 at the
beginning.
For =0 we find

III(lg,)ll (1'; O) = Hl(l]g,)IOA (x; 0> = _20)‘]16’ (-rl) 5
Hl(lg,)w (.’L‘, O) = 20)26/ (1‘1) )
from which it follows that

lim {¢*| [T (=), T (0)]|¢") = +£i0"" (2m) " (0 F 1) cos gz 0" (). (2-17)

It is easy to show that the r.h.s. of (2-17) are the one-particle matrix elements
of the normal terms of (2-1).

§ 3. Critical dimension

In the theory of the string model it is necessary to specify the gauge condition.
This makes it nontrivial to prove the covariance of the theory under the Lorentz
transformation in EST. If we choose the light-like gauge, most crucial is to
demonstrate that

[Mi~, MP-1=0, (3-1)

where M~ (i=1,2, .-, D—2) is the generator of the rotation in the EST plane
of X" and X~ =(X""—X"/v/ 2. It has been shown that the condition (3-1) is
tulfilled only for D=26 and «(0)=12"%* 1In §3-1, we reproduce the conclu-
sion D=26 in the field theory in the fixed dimensionality N=2, and subsequently
in §3-2 apply the method of analytic continuation in N. Before going into the
main part of the discussion,we present some preliminary considerations together
with the array of the formulas valid for the arbitrary dimensionality N.
In the light-like gauge the generator M is given by

M= =M=y (M + M), (3-2a)

where**
My = [, (3-2b)
My (x) =: " ()T, ()1 . (3-2¢)

Notice that M, is trilinear in the field.

It is easy to see that (3-1) does not contribute to VEV; <0|M*"M/~|0> is
obviously #j symmetric. Among the other matrix elements of (3-1), only the
connected one-particle and two-particle matrix elements are nontrivial. From the

* @(0) =2 for a closed string.

*% In the string model it is necessary to add to the r.h.s. some other terms involving the zero-
frequency part of ¢*(x). Those terms, however, do not affect the discussion on the critical dimen-
sion.
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discussion in §2 on the normal term of the Virasoro algebra, it is expected that
the two-particle matrix element is of no interest because then only the one-particle
intermediate state contributes resulting in no anomaly for N=2. An explicit calcu-
lation shows that there is no two-particle matrix element indeed. TIor these reasons
we hereafter confine ourselves to the one-particle matrix element alone.

Let us define

Jiee(@) =<{a" | My Mz 1a">
= 200 (a—a) [Glii(a D) dz, (3-3a)
where
G o (q; ) =" Ml (2) M} (0) |a"Deonn - (3-3b)
Obviously only the two-particle intermediate state contributes to (3-3);
G (g5 )= "0 G150 (a5 ), (3-4a)
where

Ge(as x) = % jdkl Jdkzei”’

X Lq" | M (0) |Rshes"y Ry ks | M5 (0) [0 (3-4b)

It is necessary to add the crossing symmetric term corresponding to the zig-zag
diagram. This implies that G7% in (3-3a) consists of two parts;

Gilo(as 2) =G50 (a; 2+ G (—a; x)s (3-5)

In terms of the quantities introduced above the one-particle matrix element
of the commutator is given by

JEI5 (@) =< | [M;, M} ]1q%
=Jin(q) —Jikn(@). (3-6)

The expression (3-2) allows us to put this into the form

TR @ = Corda—a) o™ [dx =0 (g5 ), (3-7a)
where
G633 (a5 @) = (1/16) ) ™"0" G un,pay (45 %) (3-7b)
with
010 = giegP — o7g® (3-7¢)

Here G4, (q; x) without EST indices is the sum of the three terms;

. I II J
G oy =Yw, 00+ Glh oo+ Slat 00y » (3-8a)
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where
ipxT
oo (@5.2) = (D=2) [l | s (O|T k) (hiks| T,c[0) , (3-8)
1 2
ipr
Gtk 00 (a52) =2 [dls [ dhe =[O T kDI T sal)+ (v 00)],
1 2
(3-8¢)
ipx
Glaton (g5 2) = —2 jdkl jdkz 5 7 Ca|T ko) {Fd| T 5l @) (3-8d)
1 2
with
<<O|TI!P] k1k2>> = klﬂkZu - kz;lkly _:_ ‘Oﬂv (klkz) > etc. (3 ‘ 86)
An inspection of (3-8b) gives immediately
gfuv, 00 (@5 ) =8 (271)%(;/(:;,)1)0 (), (3-9a)
with G, (x) defined in (2-5) and (2-11) of I for VEV;
Gi)ps(x) = (27) 71 (1/6) (D —2)0,0,0,0,4" (x; 0). (3-9b)

We finally obtain
JE (@) =<{q"|[M.*7, M7"1]q"")

=0""(1/16) (27) 6 (g—q') 0™ fdx e G (45 2) im0, (3-10a)

where
g(-ﬁ-, +) = (1/4) [g(ll,ll) +2‘>C£(10,11) _I_ g(lo,lo)] . (3 . 1Ob>

3-1. Exactly two dimensions

From (3-9) we have
G, o0 (@5 %) =21 (4/3) (D—2)0,0,0,0,47 (23 0). (3-11)
The calculation of &7 goes as follows: A straightforward computation gives
Gtfon (@5 ) = =2 |l [ dhe e (0" + 20 A+E8).

As in (2-4) and (2-6) of I only the “parallel movement” contributes. Following
the same procedure as in (2:6)~(2-10) of I we obtain

gﬁ,u) (¢; ) = —8i(27) (q:0; +q,0,) 0,°47 (3 0). (3-12a)
The other components are given by

Q{IIO,IO) (¢; x) = gf{;,ll) (g; x), (3-12b)
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Gl 10 (g3 1) = —8i(27) (9105 + q00,) 0,°47 (x5 0). (3-12¢)
These are combined with the formula
Gl on (@5 20) = —=8i(2m) DT =11 ) 4,004 (3 0), (3-12d)
where IT and II "® are defined in (A-3).

The result for ¢™ is similar;

Gtk = Ghey =8(27) (610, + 600) qu0ed " (3 0), (3-13a)

Gl =8(27) (¢:0: + ¢400) 00,4 (5 0), (3-13b)
or

Gl o (@3 2) =2(27) (201 —11 ) 4,064 (3 0), (3-13c)

where IT® and II'® are also shown in (A-4). Obviously all the &’s share
the same origin; the quasi massless particle arising from the parallel movement
of the two particles in the intermediate state.

We now calculate &, ., on the basis of (3-11)~(3-13);
Ginlgix) =420 [(1/6) (D—2)0"+ (¢: — ) (¢:—0:) ] (0, +0,) 0,4 (; 0).

(3-14)
In substituting (3-14) into (3-10a) we use the formulas,
jdxe_iqx (0)™4 (x;0) 0= (fg:) ™/ (2w),
jdxe’i‘” (0) 7004 (25 0) o= —7(iq)™/2.
We thus obtain
) 0, if =+4ow,
jdx e G o (45 Dimo= { 7 (3-15)
Ar/3) 0’ [ (D—2) —24], if g=—o,

which vanishes only if¥
D=26.

It is noticed that nowhere we have the intercept a(0) which is also known
to be relevant to the EST covariance. This is due to our insufficiency in including
in M’ the contribution from the zero-frequency part of ¢'(x). Its complete in-
clusion, which is of vital importance in the string model but is inevitably compli-
cated, adds some more terms to M*” other than (3-2b). As a consequence another
condition must be satisfied in addition to the vanishing of (3-15).** Then follows

* Equation (3-15) vanishes for any D if ¢i=w. For the positive g1, however, another combi-
nation [dxe %G, _y(g; x):=o fails to vanish.

*#) Roughly speaking, (3-15) and the “second condition” correspond to the first and the second
terms of (58) in Ref. 2), respectively.



1046 Y. Chikashige and Y. Fujii

the restriction on «(0). It still remains that it is (8-15) that determines D,
in terms of which «(0) is determined subsequently by the “second condition”.
The complete discussion on this point will be reported elsewhere.

3-2. N dimensions and the limit N—2

From the result (3:16) of I combined with (3-9) follows immediately:

lilzl}_eg{m,, ony (@5 2) =0. (3-16)

N

We turn to the calculation of Qf,fy,pa). Since this is linear in g, as seen from (3-8),
it is decomposed into eight invariant functions;

18
Glho (@3 2) = 3 IT0, £ (2), (3-17)

with I to T defined in (A-3). These tensors are subject to the symmetry
conditions,

H;E:,)pa:Hv(ﬁ,)pa:Hp(?ﬂv 5 (318)

i

—

n accordance with the same conditions as dictated from the r.h.s. of (3-8c). As
in §2 it is convenient to replace IT"? and IT“” by II®” and II™ which vanish

in the limit N—2, as confirmed by examining each component explicitly;
ne,,=0(N—-2). (A=15,17") (3-19)
The coefficients a,p are defined by
TP 912 = (a0) s,
as are tabulated in Table I in Appendix A. Multiplying II***“’ to (3-17) yields

H/&v,po’(A)g(IﬂIV’ J <q0)2 ; (lABfBH ) (320)

The tensor II"™""“Y is also multiplied to the r.h.s. of (3-8¢). The result is put
into the spectral representation,

oG s = (g0 j ds 7,77(s) 4 (23 5). (3-21)

As shown in Appendix C, most of the spectral functions vanish except

N-2

i (s) =—16 or @) Vst (3-22)
7n

Even this function vanishes as N—2, Including the other (zero) spectral functions
we have the general result,

0."(s) =0(N-2). (3-23)

In conformity with (3-21), the functions f,”(x) are also given the spectral
representation,
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i (@) = [ds pa7() 49 (5 9, (3-24)
Combining (3-20), (3-21) and (3-24) results in the equation
; [lABpBI[(S) :JAII(S) . (3'25)

We can solve (3:25) by taking (3-23) into account, and find

. finite nonzero, if A=15", 177,
lim p,"(s) = ] (3-26)
N2 0, otherwise.
The detail of the derivation is given in Appendix B.
Notice that the only nonvanishing functions for A=15" and 17’ are multiplied
by the tensors that vanish as N—>2. We also find that the previous result (3-12)
is nonanalytic in N as represented by the same infinite step function as (3-15)
of I. Tt thus follows that
11111 (/w 00) (‘1, x) (3 27)

N

as long as we go to the limit N=2 before the s integrations give rise to infinities.
We apply the same analysis to G, As seen from (3-8d), G* is bilinear
in ¢. The decomposition into the invariant functions is of the same form as in

(2-8).

Gl oo (a5 %) :A:Zi‘l I, f4 (). (3-28)
Corresponding to (3-21) we obtain
175D G s = (@) [ ds 0,071 49 (239, (3-29)
The only nonvanishing spectral functions are
déz”(s):—lll—an”()-IGN 2 (2a) Vst (3-30)

See Appendix C for the details. Equation (3-23) holds also for ¢,/(s). Exactly
the same arguments follow as (3-24)~(3-27), to result in

lim &{1F,, (g; ) =0. (3:31)

No2+¢

Collecting (3-16), (3-27) and (3-31), we now arrive at our final conclusion

Vhm G 0y (@5 ) = (3-32a)
or
lim {g*|[M~, M’~]|q"*>=0. (3-32b)
N-2+te

Obviously this holds true for any D.
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§ 4. Concluding remarks

We have translated the equations on the critical dimension in the string model
to those in the field theory in two dimensions. Our finding is that the anomaly
of the Virasoro algebra and the breaking of EST covariance share the same origin;
the quasi Nambu-Goldstone boson which emerges only in two dimensions. We have
then shown that these anomalous effects are removed, independent of the dimen-
sionality of EST, in the limit N=2-¢, in other words in the limit where the
hadrons are extended spatially in 1+e¢ dimensions. No other consequences of the
free string model are affected by this limiting procedure; e.g. the mass-levels,
the linear spin-squared mass relation. Extension to the continuous N is made
only at the stage of quantization; the basic Lagrangian® need not be altered.

The argument is expected to remain unchanged if the interaction is introduced
in a conformally invariant way.

We have failed to include the zero-frequency part of ¢'(x) in such a way
that it corresponds correctly to that in the string model. It is this part that
brings the intercept a(0) into the expression for (1-1). Our translation to the
Minkowski field theory is not complete in this respect; the tachyon problem is
left intact. Improving the formulation in this aspect is an important subject of
the future study. We still believe that our result sheds a new light to possible
attempts toward the final solution of the difficulties of the string model.

It is yet to be established how the calculation in terms of operators is to be
modified in the dual resonance model, according to which eliminating the ghost
requires the presence of the anomaly of VA together with D =26.
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Appendix A

We list the independent tensors which are made of Nuws 04 ¢, and are subject
to the symmetry conditions

3 e=113,, =113, . (A-1)
Tensors independent of q
I8 0o=80wTos s 113 00=% (Uaslo +uson)
0 e =507 (u0s +1060,0,),
153 06= 5007 (060,05 + 100,06 + 7,00,0, + 1,60,0,) ,
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3 ,,=%17%0,0,0,0,. (A-2)
Tensors linear in q

50,0 =501 (2,05+2:0,) +7%,0 (2,0, +a,0,) ],

500 = 4[10(0,06 +2:0,) 47, (0,0,+q,0,)

745 (2,004 0,0,) + 706 (0,0, +2,0,) 1,

1150, =%07'10,0,(q,0, +q,0,) +0,05(q.0,+q,0,) 1,

II50,= @IS e, H50e=(@0) 150, I5%= @) ,s,

50 ,e= (@IS 5, 150 = (g ,,. (A-3)
Tensors bilinear in q

52,0 = 1 (M@ + 10e0u25) »

I3, := 0 (Mu@e + 10005+ 10s@olo + 106000) »

I3 = 0,0,0,05 +0,050,a, »

I35, 0= 0,020,905 + 0,0,0,95 + 0,0:0.9, +0,0:4,9, »

I3, =200 I 505,, I5%,=2@)I5,,, H50:=2(q0)II5?

1,00
H/(z%i)nazz@a)ﬂxg.@pm Hﬂ(i?)pd:2(q0)ﬂzg,5)pm Hﬁsi?)mfzz(qa)ﬂﬂ(:?)ﬁﬂa
50, :=2@N IS0, I57%,=2q)IS55,,. (A-4)

Tensors with primed indices

H(4’) — 2H(1) _H(Z) _2H(3) +H(4)

]I‘(lé') :H'(ll) _ %H(IZ) __2]1(14) _I_H(lﬁ) ,

IO =T %H(lz) _2IT4® LT ,

H(zz’) :H(zl) _ %H(ZZ) ,

H(QG’) _ 4H(23) _|_ 2]1'(24) . 2H(25) +H(26)

IO = IO 7o 4 e

1% = iﬂ(zz’) _ %_sza) LT ,

e = %thz') — QT LT [T LT

H(31’) — 2H(23) +H(24) __ZH(:}O) +H(31) . (A . 5)
These vanish as N—2.

The coefficients a,p are defined by

(qé?)gdAB ’ (11§A9 Bgls) 1)
(gd)'ass, (21=<A,B=<32).
They are shown on Tables I and II. We use the symbol y=N—2,

A) TT (B
I+ ro¢ )H/ugpd:

(A-6)
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Table I. Coefficients asp defined by I TP ;= (g0)*asp for A, B=11,---,18; 15/,17".
y=N—2. The elements in the left-lower half are omitted since asz=aza.

1 12 13 14 16 18 15/ 17/
11 N2 4 3 N N+1 — —y
12 2(N+4) 6 2 4 2 v Y
13 3 1 2 1 0 0
14 IN? 3 1 —(N-1) 0
16 L(N+1) 1 0 0
18 1 0 0
157 3yt -3y
17 —3y

Table II. Coefficients a4z defined by II"** D II{P,;= (¢0)*asp for A, B=21, -, 32; 22/, -.- 31/,
y=N-—2. The elements in the left-lower half are omitted since asz=az4, except in the
off-diagonal part between the primed and the unprimed indices.

21 23 24 % 30 32
o 0 0 0 0 ON 2
23 2 0 2 2
24 4 8 8 4
%5 AN +2) 4(N+2) 4
30 2(N+1) 2
32 1

22/ 26/ o o 29/ 31
21 0 0 —2 0 0 —4y
23 0 0 0 0
24 0 0 0 0
25 0 —8y —4y 2y —4y —8y
30 2y —8 —2y 0 —4y —4y

]
[«]
o
o
o
[«
(@]

22/ 267 - 27’ 28/ 29/ 31;
22/ 0 0 —2 0 0 —6y
267 24y 8y —4y 16y 24y
27/ 2y 0 4y 4y
28/ y(N—-1) 0 y
29/ 2y (N +5) 14y

31 12y
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Appendix B
We consider the equation of the type
2 am(N) 2z (N) =ya(N). B-D
The m Xm matrix a,p defined by (A-6) has the structure

a(N)=<b(N) C(N)>’

T (NY d(N) (B-2)

where 6(IN) is the [X [ matrix corresponding to the unprimed indices while d(IN)
is the I’ X1’ matrix corresponding to the primed indices (I+1'=m). Likewise
¢(N) is the matrix with I rows and I’ columns. c¢¥(N) is its transposition. Since
the tensors of the primed indices vanish as N—2, it is appropriate to define tildered
matrices by

c(N)=(N—-2)&(N), (B-3a)
cT(N)=(N—-2)"(N), (B-3b)
d(N)=(N—-2)d(N). (B-3¢)

The determinants will be denoted by
4,(N) =det[a(N)], etec.

The important conclusion from Tables I and II is that

4,(2)#0, 4a(2)+0. (B-4)
In the calculation in §3-2 of G and G™ it has been shown that
Ya(N) = (N—2)35,(N), for all A. (B-5)

In the calculation in § 2 of the normal terms of the Virasoro algebra, some of

¥4(2) do not vanish if A is the unprimed index. For the primed index, v,(2)
vanishes in either case; :

Ya(N) = (N—2)54(N), for the primed A . (B-6)
On the basis of such information we will prove that
0, Section 3-2 B-7
lin 24 (V) ={ | (Section 3-2) (B-7a)
N2 finite, (Section 2) (B-7b)
if A is the unprimed index, while
lim x4 (IN) =finite, (B-8)
N2
if A is the primed index.

To prove this we introduce the following notations:
bs(N): the IXI matrix obtained from &(N) by replacing the column A
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by the upper [ elements of the one-column matrix y (V).
cA"(N): the I’ X1 matrix obtained from ¢"(N) by replacing the column A
by the lower [’ elements of the one-column matrix y(IN).
cs(N): defined in the same way as in b0,(N).
d,(N): defined in the same way as in ¢ "(N).
We find from (B-3a) and (B-3c) that

4,(N) = (IN—-2)" det<b(N) E<N)>.

c"(N) d(N)
Since ¢7(2) =0, as seen from (B-3b) it follows
4.(2) =lim (N —2)" 4,(2) £ 2). (B-9)

The coefficient 4,(2)43(2) is nonvanishing due to (B-4).
The solution of (B-1) is given by

z4(N) =D4(N) /4o (N). (B-10)

We first consider x, with the unprimed A. D,(N) is given by

ba(N)  c(N)
D4(N) _det(cAT ) d(N)> (B-11)
If (B-5) holds we obtain
D,(N)=(N—-2)"*D,(N), (B-12a)
where II
- ba(N) EN)
D, (N) =det <EAT o) J(N)) (B-12b)

Here EA(N) and &,7(IN) are obtained by substituting ¥, for y4 into b4 and ¢’
respectively. By substituting (B-9) and (B-12) into (B-10) we conclude that

24(N) =0(N—2), (B-13)

where (B-4) are crucial. This completes the proof of (B-7a).
If (B-6) alone holds, (B-12a) is replaced by
Dy (N)=(N—2)"Dy(N), (B-14a)

where

D,(N) = det(bA @) E(N)>.

; (B-14b)
ca” (N) d(N)

x4(N) no longer vanishes as N-;Z, but stays finite.
We finally consider D,(N) for the primed A;
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Da(N) :dethZ\;) ;ng (B-15)
From (B-3¢) and (B-5) or (B-6) we find dy(N) vanishes as N—>2;
Ao (N) = (N—2)du (). (B-16)
Combining this with (B-3b) we obtain
D,(N)=(N—-2)"D4(N), (B-17a)
where
pon-ufly 50y o
The result (B-8) follows from (B-9) and (B-17) immediately.
Appendix C
From (3-8¢) and (3-8¢) we find
mrseangit = —8 (20 [Loetmyt (hg) (ko). (€

We employ the formula (3-7) of I,

d,

L d’fz P j ds s®m- zjdg,, j (0 (P +s).  (C-2)
1

The angular integration can be carried out in the center-of-mass frame of the two
particles;

jdﬂk (k1q) (koq) = J[kzwz — (k- @*]1d2,=Fo*1-1/n) V,, (C-3)

where we have made use of the isotropy of the k-space to replace k;k; by (Kk?/n) 04
with 7, j the spatial indices. The factor k*»w* in (C-3) is (gp)?/4 in the general
frame. Putting all these together in (C-1) we obtain

€1y = N 2 20"V, (a0 jds S (35 5), (C-1)
from which (3-22) follows. Other ¢’s are also evaluated in the same way. They all
vanish due to the conditions ¢*=Fk>=Fk,>=0.

From (3:8d) and (3:8e) we find
G e Gl =2 [ [T (0 (ko) (k). (C5)

Using the result (C-3) we obtain
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(c-5) =16 ;N? (20" V. (0)* j ds SED=2 YD) (21 )| (C-6)
n

from which (3-30) follows.
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