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We study contributions of the discrete spectrum of the Maass laplacians to super traces of laplace
operators on super Riemann surfaces. We show that the discrete spectrum makes a contribution only
through the unit element of the super Fuchsian group in the Selberg super trace formula.

In the Polyakov formulation,” the closed (super)string measure for genus g=2
(super) Riemann surface (s)My is given by an integral over (super) moduli space with
respect to the (super) Weil-Petersson measure. The integrand consists of a certain
combination of (super) determinants of laplacians on the surfaces.”?~® D’Hoker and
Phong evaluated these determinants in terms of the Selberg zeta functions. Further-
more, Baranov et al.” showed that the Selberg super zeta functions participate in the
case of superstring. Aoki® computed the super determinants including overall fac-
tors by different method. ‘

Aoki constructed heat kernels of laplacians on the super upper half plane sH by
solving simultaneous partial differential equations. A complete set of eigenfunctions
for the Maass laplacians” was needed to solve the equations. However, the eigenfunc-
tions Aoki made use of do not form a complete set, because the discrete spectrum”?®
is not taken into account. :

It is reported recently” that the correct expression for the heat kernel of the
Maass laplacians on the upper half plane H is ’
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At first sight it may appear that the discrete spectrum does not contribute to the heat
kernel, but this is not the case. In fact, the contribution of the discrete spectrum is
already included in the above expression of g, (#).}?

In the case of superstring contributions from the discrete spectrum to super traces
are not sufficiently investigated yet. Our purpose is to study.contributions from the
discrete spectrum using explicit eigenfunctions. ‘ ’

The completeness relation we adopt is the following formula on H:
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where chd =chd(z, z2) is the hyperbolic distance between z: and z: on H, {m}={m|m
eZ, 0=m<|n|—1/2} and the P’s are given by the hyper geometric function F;
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especially for the P in the first term, which corresponds to the discrete spectrum, we
have
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[9x°(7) is derived from the second term of Eq. (1) with the line of integral moved from
Res=1/2 to Res>|n| or Res<1—|xn|. The second term of Eq. (1) alone does not lead
to the above g»'(7). The first term fills the role of moving the line of integral as
above.'”] We pay attention to contributions of the first term in Eq. (1) hereafter.
We introduce Aoki’s argument briefly. We consider the following laplacian:
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where
Zap=2a— 2o — 0abs , Oor=06.— 0, ,
Di=0,—03., D-=0—80:.

In Eq. (3) all derivatives act on variables with suffix 1. The heat kernel for the
invariant operator (z1z/z1) "d.(212/2:1)" can be written as

Ga'(Zy, Zo)=g:"(v)+iddh (7)), 4)
where Z=(z, 9), and v, 4, Z are 1 Grassmann even and 2 odd invariants:
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g.'(7) and %.'(r) should obey the following simultaneous partial differential equa-
tions: .
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with the condition
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[Equation (6) is partly different from Eq. (3+7) in Ref. 6) in signs.] Aoki’s idea is
that one can deduce ¢-°(#) from §.'(z, 22) which is the solution of
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is the Maass laplacian; g./(#) and §.'(z, z) are related as
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We split g.°(#) and %.°(#) into two ﬁarts:
gt (¥)=ge¥(r)+gz(r),
bt (P)=hE4 )+ hE(7)

where d and ¢ denote contributions of the discrete spectrum and that of the continu-
ous spectrum respectively. Aoki has found g&°(») and %5°(#) that satisfy Egs. (5)
and (6). Let us find g2%(#) and %25%(»). We can express the d-functions in Eq. (9) in
terms of the P’s as in Eq. (1). The first term on the r.h.s. of Eq. (1) contributes to
Gv#(z1, z2), from which g#%(») can be deduced. To solve Eq. (9) we use the laplace
transform in ¢, and we deduce
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Equation (5) should also hold for gi%(#) and #2%(#), and we find
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These g2%(7) and hy*(r) satisfy Eq. (6) as well. As for the initial condition we have
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The former comes up to our expectations. The latter is half of our naive expectation,
if we compare Eqgs. (1) and (8). However, it may be possible that the rest half is
supplied from %%°(#)/sh#.1?

The heat kernel for 4. on the super Riemann surface sMy;=sH/s[" can be con-
structed by the Poincaré sum over the super Fuchsian group s/™
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In the computation of the super determinant of 4., I.(¢) and I,%(¢) correspond to the
Selberg super zeta functions and an overall factor respectively. Let us calculate
I2%(t) and LA(%).

As for I7%(t), we can carry out the integration easily to obtain
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where y(M,)=2—2¢(g=2) is the Euler characteristic of the underlying manifold M.
Thus IZ“(t) is nonzero unless |#|=<1/2.

According to Selberg,'® the summation over sI” in Eq. (14) can be reduced to the
summation over primitive elements and their powers. Each of the primitive elements
is characterized by an associated length /,. After the well-known change of varibles '
(z, v)~(v=x/v, v), the integrations over 6, & and y can be done and we find, for the
n>0 case,
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where chd =chd(z, e?”"z)=chpl,+2v*sh*((pl,)/2). Note that F(2|n|—m, —m, 2|#x|
—2m; 2/(1+chd)) is a polynomial of degree =m in (1+chd)™}, and that

1+chd =2<chp717+ z‘vshf’TZ’)(chl’Tl’— z‘vshpTZ’) .

Naive power counting of v shows us that the integration over v in Eq. (16) can be
treated by a contour integration. [It is convenient to choose the contour on the upper
(lower) half plane for # positive (negative).] The first and fourth terms in the square
brackets in Eq. (16) have no pole in the contour, and they vanish. This situation is
- analogous to the bosonic case.®® While (1+chd) ™ in F gives rise to a pole of first
order for the second, third and fifth terms in Eq. (16). Each of them produces the
following nonzero value respectively:
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However, they successfully sum up to zero. Thus we find L4(¢t)=0 for »>0. It is
.easy to get the same result for #<0.

Our conclusion is that the discrete spectrum contributes to the super traces only
through the unit element of the super Fuchsian group s/’ in the Selberg super trace
formula. Our result is a super-analogue of the result by D’Hoker and Phong.'®
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