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In order to consider the problem of mutual transition between the shell structure
and the cluster structure of nuclei, a model nuclear matter is treated in which
deuteron is the most important unit of clustering. Hartree-Bogoliubov theory is
applied to the problem of deuteron clustering of the whole system. The problem of
a deuteron moving rapidly in the nuclear matter is also treated. The many-body
effects on the clustering is discussed in two points: Pauli principle and the single
particle potential.

§1. Introduction

In recent years the cluster structure of nuclei has been found extensively
in light nuclei with the progress of experimental observations. Theoretical
investigations have been also made® and now it is one of the most interest-
ing problem of nuclear structure.

The term “cluster structure” is used in various meanings; one of the
examples is the a-particle model™® in which free a-particles are assumed to
exist with weak a-@ or a-nuclear core interaction and the other typical ex-
ample is the cluster coupling shell model™® in which the valence nucleons
in the open shell correlate in a cluster type coupling scheme. We can con-
sider these aspects of the cluster structure as the problem of composite
particles within a many-body system. A composite particle feels the poten-
tial field from other particles and also the effect of Pauli principle. These
two many-body effects tend to change the composite particle from the free
one. If the many-body effects are relatively weak, the composite particle
remains as the localized substructure of the many-body system, but as the
many-body effects become strong, the composite particle can no longer retain
its own localization and melts into the whole system, and its original prop-
erties remain only as the cluster coupling in shell model. This is, in other
word, the problem of the mutual transition between the shell structure and
the cluster structure.

In this paper we treat deuteron clustering in the nuclear matter as a
model for the above-mentioned problem. In §2 the problem of deuteron
clustering of the whole nuclear matter is qualitatively discussed. In §3 the
problem is treated noting the relation between the deuteron clustering and
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single particle potential. In §4 the problem of a cluster moving in nuclear
matter is discussed.

§2. Qualitative discussions
—From the super-state to the cluster-state—

A deuteron in the nuclear matter is subjected to many-body effects in
two points; one is the effective nucleon mass and the other Pauli principle.
The effective nucleon mass in the ruclear matter is smaller than the free
one.® Pauli principle reduces effectively the attractive force between neutron
and proton by cutting off a part (mainly low momentum part) of the mo-
mentum components of wave function. Thus both the effects are unfavorable
to the binding of a deuteron cluster in the nuclear matter. These many-
Lody effects become more remarkable as the increase of the average density
of nuclear matter.

If there can be a deuteron cluster in the nuclear matter at a certain
density, all other n-p pairs will be also deuteron clusters. This is a many-
body problem with a pair (n-p pair) interaction® Such a problem can be, as
is well-known, treated by a theory of superconductivity. For like nucleons
such a problem has been already investigated as the problem of energy gap
in the nuclear matter. Here we apply the theory to the case of the 7-p
interaction. Essential difference between the two cases is that the former has
no bound state, while the latter has a bound state: a deuteron.

The so-called gap equations for (k, —k) pairs in B.C.S.-Bogoliubov
theory are

A(k)=—§<klvlk'><o(k’), @1
1 A(K) _
o(k)=3 V(E(R) —D)*+4(k)* 2-2)
S o(k) =100 =288 2-3)
1 (E(k)—2) .
and k)= { V (ER) — D+ (k) f @4

where A4(k), 2, oo and ks are the energy gap, chemical potential, average
density and Fermi momentum, respectively. Here v and E(k) are the pair
interaction under consideration and the single particle energies, and ¢(k) and
p(k) are the pair correlation function and the occupation density for the
state of momentum k.

*) Actually it is fictious to consider only the 7z-p interaction neglecting the n-n and p-p
interactions and also the interaction between pairs. In the real case there will occur a-particle
clustering. It is noted that we treat a model in this paper.
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It is known that the energy gap vanishes at higher density (2-=>1.4fm™)
because of the repulsive core in the case of the n-n (p-p) interaction and
the nuclear matter becomes normal Fermi gas. This behavior will be similar
for the 7n-p case. In the lower density the energy gap occurs due to the
attractive nuclear interaction and the nuclear matter becomes a super-state
with a diffused Fermi surface. As the density tends to zero (kx—0) it is
easily seen by Eq. (2-3) the nuclear matter follows either of two possible
paths in Fig. 1. We know that for the n-n (p-p) interaction the case of
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Fig. 1. Two possible paths of the occupation density p(k) which are realized
when average density of nuclear matter tends to zero.

Fig. 1(a) is realized and the nuclear matter tends to a normal Fermi gas again.
In this case the energy gap tends to zero rapidly as follws,*
W Wt 1

ST <1 ) :
A(ki‘) M* F EXP 2 M* kb‘ <kFlR|kF>, (2 5)

where <{ks|R|kr) is the reaction matrix element which is negative at the
Fermi momentum. On the other hand the case of Fig. 1(b) is realized as
seen in Egs. (2:3) and (2-4) if 2 tends to a negative value 4, and 4 to zero.
The energy gap 4(k) goes to zero as k¥* less rapidly than in the case of
Fig. 1(a) (Eq. (2-5)). In the limit of 2x—0 Egs. (2-1)~(2-4) can be
written as

R(E) =~ 3 Chlol ) B0 (2-6)
R(B T .
and 3 [2E(k>—2xo] —b @D

where R(k) is defined by ((4n/3)k:)*24(k). We see that these are the
equation and normalization condition for a bound state of a pair in free space
where 22, is the binding energy and [R(k)/(2E(k)—21,)] is the wave func-
tion in momentum space. Even for finite density we may interprete the state
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of negative 1 as the bound state of pairs with the binding energy 24. Thus
Fig. 1(b) means the path from a super-state (Fermi gas like) to a cluster-
state (deuteron gas like, 2<C0), which occurs in the case of the n-p inter-
action.

The above process can be also interpreted in terms of the occupation
density po(k). Let us call the states with p(k) larger (smaller) than 1/2 as
the hole (particle) states. In the case of Fig. 1(b) the hole states decrease
as the density becomes lower and finally at the density where o(k)<<1/2
for all k the concept of rparticle and hole (indispensable to independent
particle picture) becomes quite meaningless. This is just the density where
2 becomes negative (Eq. (2-4)). At such a low density it is better to inter-
pret p(k) as composed of deuteron clusters piled up in momentum space.
The deuteron clusters have the wave-function more extended than the free
deuteron and are degenerate in K =0 state as if they were bosons (K: center
of mass momentum of deuteron cluster). The effects of Pauli principle and
the single particle potential produced by other particles are all included in
the internal structure of the deuteron clusters.

Now we solve Egs. (2-1)~(2-4) in order to see at what density the
nuclear matter goes to the cluster state. As the n-p interaction we use
Yamaguchi potential,® central®and separable;

klv(CE) |F)=G.-g(k)-g(k),
g(k) =1/ (K*+u),

_ W4 1/ W ) (2-8)
G, oM n_ﬂ(.u_l_ 2226/77 ’
7=1.4488 fm™.

The single particle energy E(k) is taken here as the free kinetic energy
#2E*/2M® The calculated results are shown in Fig. 2 (a) for chemical
potential A and in Fig. 2 (b) for the occupation density p(k). 2 tends to
—1.1 MeV (1/2 of the deuteron binding energy) as expected in the limit
of kx—>0. 1 is found to become negative, that is, the nuclear matter goes
to the cluster state from the super-state, at the density corresponding to
Ee=~0.3 fm™. This value is interpreted as follows: a free deuteron wave
function has a tail e (¢=v(M/#®) | E|~0.2fm™) and so its Fourier com-
ponents ~1/(%k*+ &%), that is, low momentum components 2"« are necessary
for a deuteron to be bound. If these components are cut off by Pauli principle,
the deuteron can be no longer bound. The value £#=~0.3 fm™ roughly cor-
responds to this situation.

* This corresponds to taking account of only the effect of Pauli principle. The effect of
the effective mass is discussed in §3.
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Fig. 2. (@) The chemical potential A as a function of k¢ (solid line). Fermi energy
of normal Fermi gas is drawn for comparison (dotted line). (b) The occupa-
tion density p(k). Here the effective mass is not taken into account.

§3. Deuteron clustering and single particle potential

In §2 we discuss qualitatively the problem of deuteron clustering of
nuclear matter noticing only the effect of Pauli principle. Actually the
structure of the system depends on not only the clustering energy but also
the single particle potential energy. This problem is treated by considering
self-consistently the deuteron-clustering in a single particle potential field and
also the rotential field produced by the clustering particles. We assume
that in low density clustering correlation is important between n-p pairs and
the n-n and p-p interaction only contribute to the single particle potential.
We can treat the problem by Hartree-Bogoliubov method.® We present here
several important equations in the method.

Total energy perparticle E is given by

where 7, U and E. mean respectively the kinetic energy, single particle
potential energy and clustering energy of n-p pairs. They are given by

T=S ZA’Z p(k)dk/gp(k)dk, (3-2)
o L ONOL AL (3-3)
_ 1 A(k)* )
and Eo= ZS/(E@_DZM(k)Z_dk/Sp(k)dk, (3-4)

where E(k) is the single particle energy #2k2/2M+ U(k). The single particle
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potential U(k) is obtained from the two-body interactions as follows:

UG =2x S{ R jo0s) | BSH + (E2E 105 | E-R S nyan,

(3-5)

where we take only the singlet S and triplet S (including effectively the
triplet even tensor force) for simplicity. The energy gap 4(k), the occupa-
tion density p(k) and the chemical potential A are obtained by solving the
gap equations between n-p pairs:

_ 1 3 ’ A(":,) 4 .
"U‘)“?SG"”( )1k \V(E(k’)—/t)2+d(k’)2 K, (3-6)

_1f E(k)—2 )
(k)= {1 V(EE) =D+ A(k)? } -7

and S,;(k)dk:‘l—;ka . (3-8)

Equations (3-5)~(3-8) should be solved self-consistently and then the total
energy is given by Egs. (3-1)~(3-4).

We use again Yamaguchi potential in Eq. (2-8) but for singlet state
Gs=0.7G, in place of G;,. Then from Eq. (3-6)

A(k)=4-g(k), (3-9)

and Eqgs. (3:5)~(3-8) are simplified and easily solved numerically. Calcu-
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Fig. 3. (@) The single particle potential U(%). (b) The energy gap 4 and the chemical
potential A” (W'=A—U(%=0)). These are obtained by solving Hartree-Bogoliubov
equations.
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lated results of U(%), 4 and X are shown in Figs. 3 (a) and 3(b). 4 is
defined by

¥=2—U(k=0). (3-10)

A is a measure of deuteron clustering of n-p pairs. The single particle poten-
tial U(k) brings about an effective nucleon mass smaller than the free one,
which makes difficult the clustering of 7n-p pairs. Because of this effect 1’
in Fig. 3(b) is a little larger than A in Fig. 2(a), though the effect is
negligibly small at %2;=0.3fm™. We see here again that A’ crosses zero
at kr=~03fm™ In Fig. 4 we show the results for E, T, U, E. (solid
lines) and for comparison the values

in the case of normal Fermi gas 14} (MeV)

(o(B) =1 for k<kp and O for 2>ks)
(dotted lines). In higher density the
single particle potential energy U is
large and Fermi gas (independent
particle) aspect becomes marked.
In lower density where U is small
the clustering energy E. plays a
principal role and the deuteron clus-
ter aspect reveals itself. In the
low density limit 7" and E. corre-
spond to the kinetic energy and the
potential energy of a deuteron.®
The single particle potential energy -10)
U is reduced only a little from that
of normal Fel:ml gas. The tOta,l Hartree-Bogoliubov equations includ-
energy per-particle E becomes post- ing the deuteron clustering effect.
tive, in the normal Fermi gas, at Dotted lines are those of normal
ky=~0.7 fm™ because of predominance Fermi gas with no clustering effects.
of the kinetic energy. In our case, E, T, U and Ec represent the total

h E is al . d energy, kinetic energy, single particle
owever, 1s always negative due potential energy and deuteron cluster-

to the clustering energy and tends ing energy, respectively, per-particle.
to —1.1 MeV going over a very E=T+U+E..

& Ny

Fig. 4. Solid lines show the results from

* When kr tends to zero in Egs. (3-1)~(3-4), it is easily seen that U—0 and so E(%)
—T(k) and then

Tooa+ S {T(B) -2} p(B)dE /Sp(k)dk

A4k
—>A+S{T(k)—7\} Zmdk/‘gp(k)dk,

1 A(k)?
Ec—>——4 TG -« Adk/ Sp(k)dk.
Therefore E—a.
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smooth peak. This peak, though very smooth, results from the fact that at
ke~0.3fm™ the potential energy is already reduced and also the effect of
Pauli principle still suppresses the clustering. The smoothness of the peak
means that the structure of nuclear matter changes very gradually with
density.

$§4. A deuteron cluster moving in the nuclear matter

In the previous sections we consider the transition of the whole system
from the super-state to the cluster-state (deuteron gas-like). There is anoth-
er type of clustering such as a deuteron, alpha particle, etc. outside the
core. This is related also to the case of reactions of deuteron, alpha particle,
with nucleus.

In order to comsider such a case, we investigate a deuteron moving with
centre of mass momentum P in the nuclear matter. The equation of motion
of the deuteron is given by

P P P P
B +k)+ B(F —k)-2W}o(F+ k7 k)
{ 2 k)T 2 w 2 ki, 2 k
(4-1)

-2G S f(i ~/L_f>(L ,P_,),

= I\ RNQ( -+, 5 —F oS-+ K, - —FK dK,
where k is the relative momentum and 2W is the eigenvalue, the sum of
the centre of mass energy and internal energy of the deuteron, and

E(%ik)=h2(—§ik>2/2M*<‘§ikD, (4-2)
NESHE S EI I E S S

Here Q is the projection operator which inhibits the nucleons of the deuteron
to occupy the states already occupied by the nuclear matter, and the occupa-
tion density of nuclear matter is p(k). We take into account only the rela-
tive S-state interaction and so take the average value for E(| P/2+k|) and
po(| P/2+k|) over the angle between P and k. Then Eq. (4-1) becomes as
follows:

(E(k, P)— W)#(k, P) =Gg(k) S:g(lz’ YQE, P)w (¥, P)k'*dF/, (4-4)

B Py =5\ E()/ 24+ Pra)dz, (4-5)

Q(k, P)=1—2o(k, P) (4-6)
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e
and ok D=3\ o(y/ T+t + Pre)de. @

Equation (4-4) is easily rewritten in the form of dispersion:

= g(R)*Q,DP) 121y
al, g b S wdr=1. (4-8)

We cannot separate the energy E(k, P) into the centre of mass and
internal energy, because the effective mass M* depends on P and k. But
we may put E(k=0,P) as the (half of) kinetic energy of the centre of
mass. Then the eigenvalue is separated as follows:

W=E(%=0, P)+w(P), (4-9)

where w(P) is the internal energy of the deuteron with c.m. momentum P.
If the deuteron is bound, then w(P) will be negative. op(k, P) is interpreted
as the occupation density at the state £ of nuclear matter felt by the
deuteron moving with c.m. momentum P.

It is obvious that for very large P w(P) gives the binding energy of
free deuteron, because p(%, P) becomes very small and Q(%, P) almost unity
for not so large k. By solving Egs. (4-1)~(4-3) over the values of P we
can see the change of the deuteron. In Figs. 5(a) and 5(b) we give the
results of w(P) and p(k, P) calculated using the values of p(£) in §2. As
seen from Fig. 5(a), the deuteron is the more deeply bound for a e¢.m. mo-
mentum P, the lower the density of nuclear matter is. Figure 5(b) shows
that p(k, P) decreases for small £ as P increases and this leads to gain in
w(P). In Fig. 5(b), at P=19fm™ and k+=0.7 fm™ the occupation density
o(k, P) is about 0.1 in the range of interaction. This is very small, never-

w (P)

05

k=03 05 07 0.5 1.0 15 4 (fmi')
@ (b)

Fig. 5. (a) Internal energy w(P) of a deuteron moving in the nuclear matter with c.m.
momentum P. The broken arrow is the path of a deuteron coming into the matter
with momentum Po=1fm-!. (b) Occupation density p(%, P) of nuclear matter
with £2=0.7 fm-! felt by a nucleon in a deuteron moving with momentum P.
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theless w(P) is nearly zero (Fig. 5(a)) and so the deuteron can be hardly
bound. This fact shows that the Pauli effect is very severe. From Eq.
(4-7) the relation p(0, P) =p(P/2,0) is found. From this relation we see
that if the Fermi surface of nuclear matter is diffused, p(%, P) has non-
vanishing value for small %2 even for large P. This suggests that the less
correlated the nuclear matter is, the more easily bound a cluster moving in
the nuclear matter is.

The condition that the state with a cluster moving in the nuclear matter
is energetically more favourable than the state with the cluster melted into
the matter is intuitively given by

E(k=0, P) +w(P)—2+ 4(ks)<<0, (4-10)

where 2 and 4(kr) are the Fermi energy and energy gap when a pair of
nucleons is picked up out of the nuclear matter. This condition can be
satisfied, if 4(%r) is small and w(P) tends to the binding energy of free
deuteron rapidly with P. The condition is, however, very severe and in our
calculation it'is impossible to find such a P satisfying this condition for any
value of k.

We consider such a case as a deuteron passing through the nuclear
matter. In the sense of local density approximation the deuteron with
incident momentum P, has a momentum P=(P,+2ks) when it passes the
matter with density ks. Therefore to see the behaviour of the deuteron
passing through the matter, we follow the path of w(P,+2ks) from k:=0
to ks=1.4fm™ In Fig. 5(a) the path is given for the case of P,=1fm™
(W*P3/4M=~=10 MeV) by the broken arrow and it is expected that the deuteron
is already dissociated at the normal density.

We would like to express our sincere thanks to Professor R. Tamagaki
and Professor S. Nagata for valuable discussions.
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